Author:
Zhang Muhan,Cui Zhicheng,Jiang Shali,Chen Yixin
Abstract
This paper addresses the hyperlink prediction problem in hypernetworks. Different from the traditional link prediction problem where only pairwise relations are considered as links, our task here is to predict the linkage of multiple nodes, i.e., hyperlink. Each hyperlink is a set of an arbitrary number of nodes which together form a multiway relationship. Hyperlink prediction is challenging---since the cardinality of a hyperlink is variable, existing classifiers based on a fixed number of input features become infeasible. Heuristic methods, such as the common neighbors and Katz index, do not work for hyperlink prediction, since they are restricted to pairwise similarities. In this paper, we formally define the hyperlink prediction problem, and propose a new algorithm called Coordinated Matrix Minimization (CMM), which alternately performs nonnegative matrix factorization and least square matching in the vertex adjacency space of the hypernetwork, in order to infer a subset of candidate hyperlinks that are most suitable to fill the training hypernetwork. We evaluate CMM on two novel tasks: predicting recipes of Chinese food, and finding missing reactions of metabolic networks. Experimental results demonstrate the superior performance of our method over many seemingly promising baselines.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献