Local Systems on Diamonds and p-Adic Vector Bundles

Author:

Mann Lucas1,Werner Annette2

Affiliation:

1. Mathematisches Institut, Universität Bonn , Endenicher Allee 60, 53115 Bonn, Germany

2. Institut für Mathematik, Goethe-Universität Frankfurt , Robert-Mayer-Str. 6-8, 60325 Frankfurt am Main, Germany

Abstract

Abstract We use Scholze’s framework of diamonds to gain new insights in correspondences between $p$-adic vector bundles and local systems. Such correspondences arise in the context of $p$-adic Simpson theory in the case of vanishing Higgs fields. In the present paper, we provide a detailed analysis of local systems on diamonds for the étale, pro-étale, and the $v$-topology and study the structure sheaves for all three topologies in question. Applied to proper adic spaces of finite type over $\mathbb {C}_p$, this enables us to prove a category equivalence between $\mathbb {C}_p$-local systems with integral models, and modules under the $v$-structure sheaf that modulo each $p^n$ can be trivialized on a proper cover. The flexibility of the $v$-topology together with a descent result on integral models of local systems allows us to prove that the trivializability condition in the module category may be checked on any normal proper cover. This result leads to an extension of the parallel transport theory by Deninger and the second author to vector bundles with numerically flat reduction on a proper normal cover. 2020 MSC: 14G45, 14G22, 11G25.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference28 articles.

1. The p-adic Simpson Correspondence

2. The pro-étale topology for schemes;Bhatt;Astérisque,2015

3. Non-Archimedean Analysis

4. Vector bundles on $p$-adic curves and parallel transport;Deninger;Ann. Sci. Éc. Norm. Supér. (4),2005

5. On Tannaka duality for vector bundles on $p$-adic curves;Deninger;London Math. Soc. Lecture Note Ser.,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3