A geometric p-adic Simpson correspondence in rank one

Author:

Heuer BenORCID

Abstract

For any smooth proper rigid space $X$ over a complete algebraically closed extension $K$ of $\mathbb {Q}_p$ we give a geometrisation of the $p$ -adic Simpson correspondence of rank one in terms of analytic moduli spaces: the $p$ -adic character variety is canonically an étale twist of the moduli space of topologically torsion Higgs line bundles over the Hitchin base. This also eliminates the choice of an exponential. The key idea is to relate both sides to moduli spaces of $v$ -line bundles. As an application, we study a major open question in $p$ -adic non-abelian Hodge theory raised by Faltings, namely which Higgs bundles correspond to continuous representations under the $p$ -adic Simpson correspondence. We answer this question in rank one by describing the essential image of the continuous characters $\pi ^{{\mathrm {\acute {e}t}}}_1(X)\to K^\times$ in terms of moduli spaces: for projective $X$ over $K=\mathbb {C}_p$ , it is given by Higgs line bundles with vanishing Chern classes like in complex geometry. However, in general, the correct condition is the strictly stronger assumption that the underlying line bundle is a topologically torsion element in the topological group $\operatorname {Pic}(X)$ .

Publisher

Wiley

Reference40 articles.

1. Heu22a Heuer, B. , $G$ -torsors on perfectoid spaces, Preprint (2022), arXiv:2207.07623.

2. A p-adic Simpson correspondence

3. Groupes analytiques rigides p-divisibles

4. Perfectoid Spaces

5. The p-adic Simpson Correspondence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3