Line bundles on rigid spaces in thev-topology

Author:

Heuer BenORCID

Abstract

AbstractFor a smooth rigid spaceXover a perfectoid field extensionKof$\mathbb {Q}_p$, we investigate how thev-Picard group of the associated diamond$X^{\diamondsuit }$differs from the analytic Picard group ofX. To this end, we construct a left-exact ‘Hodge–Tate logarithm’ sequence$$\begin{align*}0\to \operatorname{Pic}_{\mathrm{an}}(X)\to \operatorname{Pic}_v(X^{\diamondsuit})\to H^0(X,\Omega_X^1)\{-1\}. \end{align*}$$We deduce some analyticity criteria which have applications top-adic modular forms. For algebraically closedK, we show that the sequence is also right-exact ifXis proper or one-dimensional. In contrast, we show that, for the affine space$\mathbb {A}^n$, the image of the Hodge–Tate logarithm consists precisely of the closed differentials. It follows that, up to a splitting,v-line bundles may be interpreted as Higgs bundles. For properX, we use this to construct thep-adic Simpson correspondence of rank one.

Publisher

Cambridge University Press (CUP)

Subject

Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis

Reference41 articles.

1. On one-dimensional separated rigid spaces

2. [13] de Jong, A. J. et al. ‘The stacks project’. 2022. https://stacks.math.columbia.edu/.

3. [27] Kedlaya, K. S. and Liu, R. . ‘Relative $p$ -adic Hodge theory, II: Imperfect period rings’. Preprint, 2016, arXiv:1602.06899.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A geometric p-adic Simpson correspondence in rank one;Compositio Mathematica;2024-05-21

2. A p-adic Simpson correspondence for rigid analytic varieties;Algebra & Number Theory;2023-08-29

3. Rigid Analytic p-Adic Simpson Correspondence for Line Bundles;Communications in Mathematics and Statistics;2022-07-13

4. The p-adic Corlette–Simpson correspondence for abeloids;Mathematische Annalen;2022-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3