Abstract
AbstractFor an abeloid variety A over a complete algebraically closed field extension K of $$\mathbb {Q}_p$$
Q
p
, we construct a p-adic Corlette–Simpson correspondence, namely an equivalence between finite-dimensional continuous K-linear representations of the Tate module and a certain subcategory of the Higgs bundles on A. To do so, our central object of study is the category of vector bundles for the v-topology on the diamond associated to A. We prove that any pro-finite-étale v-vector bundle can be built from pro-finite-étale v-line bundles and unipotent v-bundles. To describe the latter, we extend the theory of universal vector extensions to the v-topology and use this to generalise a result of Brion by relating unipotent v-bundles on abeloids to representations of vector groups.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Reference41 articles.
1. Abbes, A., Gros, M., Tsuji, T.: The $$p$$-adic Simpson correspondence. Annals of Mathematics Studies, vol. 193. Princeton University Press, Princeton (2016)
2. Berthelot, P., Breen, L., Messing, W.: Théorie de Dieudonné cristalline II. Lecture Notes in Mathematics, vol. 930. Springer, Berlin (1982)
3. Bhatt, B., Morrow, M., Scholze, P.: Integral $$p$$-adic Hodge theory. Publ. Math. Inst. Hautes Études Sci. 128, 219–397 (2018)
4. Blakestad, C., Gvirtz, D., Heuer, B., Shchedrina, D., Shimizu, K., Wear, P., Yao, Z.: Perfectoid covers of abelian varieties. arXiv:1804.04455 (2018) (preprint)
5. Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean analysis. Grundlehren der Mathematischen Wissenschaften, vol. 261. Springer, Berlin (1984)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献