Unique k-mer sequences for validating cancer-related substitution, insertion and deletion mutations

Author:

Lee HoJoon1,Shuaibi Ahmed1,Bell John M2,Pavlichin Dmitri S1,Ji Hanlee P12ORCID

Affiliation:

1. Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA

2. Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA

Abstract

Abstract Cancer genome sequencing has led to important discoveries such as the identification of cancer genes. However, challenges remain in the analysis of cancer genome sequencing. One significant issue is that mutations identified by multiple variant callers are frequently discordant even when using the same genome sequencing data. For insertion and deletion mutations, oftentimes there is no agreement among different callers. Identifying somatic mutations involves read mapping and variant calling, a complicated process that uses many parameters and model tuning. To validate the identification of true mutations, we developed a method using k-mer sequences. First, we characterized the landscape of unique versus non-unique k-mers in the human genome. Second, we developed a software package, KmerVC, to validate the given somatic mutations from sequencing data. Our program validates the occurrence of a mutation based on statistically significant difference in frequency of k-mers with and without a mutation from matched normal and tumor sequences. Third, we tested our method on both simulated and cancer genome sequencing data. Counting k-mer involving mutations effectively validated true positive mutations including insertions and deletions across different individual samples in a reproducible manner. Thus, we demonstrated a straightforward approach for rapidly validating mutations from cancer genome sequencing data.

Funder

National Institutes of Health

American Cancer Society

National Science Foundation

Clayville Foundation

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3