New insights into the neurofibroma tumor cells of origin

Author:

Li Stephen123,Chen Zhiguo1,Le Lu Q1345ORCID

Affiliation:

1. Department of Dermatology, University of Texas Southwestern Medical Center, Dallas

2. Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas

3. Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas

4. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas

5. Neurofibromatosis Clinic, University of Texas Southwestern Medical Center, Dallas

Abstract

Abstract Neurofibromatosis type I (NF1) is a debilitating inherited tumor syndrome affecting around 1 in 3000 people. Patients present with a variety of tumors caused by biallelic loss of the tumor suppressor neurofibromin (NF1), a negative regulator of Ras signaling. While the mechanism of tumor formation is similar in the majority of NF1 cases, the clinical spectrum of tumors can vary depending on spatiotemporal loss of heterozygosity of NF1 in cells derived from the neural crest during development. The hallmark lesions that give NF1 its namesake are neurofibromas, which are benign Schwann cell tumors composed of nervous and fibrous tissue. Neurofibromas can be found in the skin (cutaneous neurofibroma) or deeper in body near nerve plexuses (plexiform neurofibroma). While neurofibromas have been known to be Schwann cell tumors for many years, the exact timing and initiating cell has remained elusive. This has led to difficulties in developing animal models and successful therapies for NF1. A culmination of recent genetic studies has finally begun to shed light on the detailed cellular origins of neurofibromatosis. In this review, we will examine the hunt for neurofibroma tumor cells of origin through a historical lens, detailing the genetic systems used to delineate the source of plexiform and cutaneous neurofibromas. Through these novel findings, we can better understand the cellular, temporal, and developmental context during tumor initiation. By leveraging this data, we hope to uncover new therapeutic targets and mechanisms to treat NF1 patients.

Funder

National Cancer Institute

National Institutes of Health

U.S. Department of Defense

National Institute on Aging

Neurofibromatosis Therapeutic Acceleration Program

Publisher

Oxford University Press (OUP)

Subject

Electrical and Electronic Engineering,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3