Updraft and downdraft characterization with Doppler lidar: cloud-free versus cumuli-topped mixed-layer
Author:
Ansmann A.,Fruntke J.,Engelmann R.
Abstract
Abstract. For the first time, a comprehensive, height-resolved Doppler lidar study of updrafts and downdrafts in the mixing layer is presented. The Doppler lidar measurements were performed at Leipzig, Germany, in the summer half year of 2006. The conditional sampling method is applied to the measured vertical velocities to identify, count, and analyze significant updraft and downdraft events. Three cases of boundary layer evolution with and without fair weather cumuli formation are discussed. Updrafts occur with an average frequency of 1–2 per unit length zi (boundary layer depth zi), downdrafts 20%–30% more frequently. In the case with cumuli formation, the draft occurrence frequency is enhanced by about 50% at cloud level or near cloud base. The counted updraft events cover 30%–34%, downdrafts 53%–57% of the velocity time series during the main period of convective activity. By considering all drafts with horizontal extent >36 m in the analysis, the updraft mean horizontal extent ranges from 200–350 m and is about 0.15zi in all three cases. Downdrafts are a factor of 1.3–1.5 larger. The average value of the updraft mean vertical velocities is 0.5–0.7 m/s or 0.4w∗ (convective velocity scale w∗), and the negative downdraft mean vertical velocities are weaker by roughly 10%–20%. The analysis of the relationship between the size (horizontal extent) of the updrafts and downdrafts and their mean vertical velocity reveals a pronounced increase of the average vertical velocity in updrafts from 0.4–0.5 m/s for small thermals (100–200 m) to about 1.5 m/s for large updrafts (>600 m) in the case with fair weather cumuli. At cloudless conditions, the updraft velocities were found to be 20% smaller for the large thermals.
Publisher
Copernicus GmbH
Reference31 articles.
1. Ansmann, A., Tesche, M., Knippertz, P., Bierwirth, E., Althausen, D., Müller, D., and Schulz, O.: Vertical profiling of convective dust plumes in southern Morocco during SAMUM, Tellus B, 61, 340–353, 2009. 2. Baars, H., Ansmann, A., Engelmann, R., and Althausen, D.: Continuous monitoring of the boundary-layer top with lidar, Atmos. Chem. Phys., 8, 7281–7296, 2008. 3. Bösenberg, J. and Linné, H.: Laser remote sensing of the planetary boundary layer, Meteorol. Z., 11, 233–240, 2002. 4. Drobinski, P., Carlotti, P., Newsom, R. K., Banta, R. M., Foster, R. C., and Redelsperger, J.-L.: The structure of the near-neutral atmospheric surface layer, J. Atmos. Sci., 61, 699–714, 2004. 5. Durand, P., Thoumieux, F., and Lambert, D.: Turbulent length–scales in the marine atmospheric mixed layer, Q. J. Roy. Meteorol. Soc., 126, 1889–1912, 2000.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|