Affiliation:
1. Leibniz Institute for Tropospheric Research, Leipzig, Germany
Abstract
Abstract
A chirped laser pulse can introduce artifacts into datasets of coherent Doppler wind lidars. At close vicinity of strong signal peaks undesired artificial velocities can be measured and continuous signals can be shifted by a constant factor. It is shown how to remove these artifacts and how to retrieve accurate velocity estimations from both clouds and the planetary boundary layer. Therefore, a two-dimensional deconvolution technique is applied to the wind lidar datasets in order to correct the chirp effect in the range and frequency space. The chirp correction for a 1-h measurement of vertical velocities in the atmosphere is presented. The method is applied to the averaged Doppler spectra. Therefore, no access to the raw heterodyne signal is necessary. The complexity of the data acquisition software and the amount of data to be stored is hereby significantly reduced. Simulations suggest that the remaining velocity error resulting from the laser pulse chirp is smaller than 0.02 m s−1 and chirp-induced artifacts are removed reliably. The method also increases the signal resolution in the range and frequency dimension and can be applied for this intent even if there is no chirp.
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献