Estimating spatial variation in Alberta forest biomass from a combination of forest inventory and remote sensing data

Author:

Zhang J.,Huang S.,Hogg E. H.,Lieffers V.,Qin Y.,He F.

Abstract

Abstract. Uncertainties in the estimation of tree biomass carbon storage across large areas pose challenges for the study of forest carbon cycling at regional and global scales. In this study, we attempted to estimate the present aboveground biomass (AGB) in Alberta, Canada, by taking advantage of a spatially explicit data set derived from a combination of forest inventory data from 1968 plots and spaceborne light detection and ranging (lidar) canopy height data. Ten climatic variables, together with elevation, were used for model development and assessment. Four approaches, including spatial interpolation, non-spatial and spatial regression models, and decision-tree-based modeling with random forests algorithm (a machine-learning technique), were compared to find the "best" estimates. We found that the random forests approach provided the best accuracy for biomass estimates. Non-spatial and spatial regression models gave estimates similar to random forests, while spatial interpolation greatly overestimated the biomass storage. Using random forests, the total AGB stock in Alberta forests was estimated to be 2.26 × 109 Mg (megagram), with an average AGB density of 56.30 ± 35.94 Mg ha−1. At the species level, three major tree species, lodgepole pine, trembling aspen and white spruce, stocked about 1.39 × 109 Mg biomass, accounting for nearly 62% of total estimated AGB. Spatial distribution of biomass varied with natural regions, land cover types, and species. Furthermore, the relative importance of predictor variables on determining biomass distribution varied with species. This study showed that the combination of ground-based inventory data, spaceborne lidar data, land cover classification, and climatic and environmental variables was an efficient way to estimate the quantity, distribution and variation of forest biomass carbon stocks across large regions.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference71 articles.

1. ABMI (Alberta Biodiversity Monitoring Institute): ABMI wall-to-wall Land Cover Map circa: Version 2.1: Metadata, Alberta Biodiversity Monitoring Institute, Edmonton, Canada, available at: www.ABMI.ca, 2012.

2. ABMI Remote Sensing Group: Accuracy Assessment of the Alberta wall to wall landcover polygon vector layer circa 2000, beta version (ABw2wLCV2000beta). 1st Draft, Alberta Biodiversity Monitoring Institute, Edmonton, Canada, available at: www.ABMI.ca, 2012.

3. Alberta Natural Regions Committee: Natural regions and subregions of Alberta (compiled by D. J. Downing and W. W. Pettapiece). Government of Alberta, Publication No. T/852, available at: ww.tpr.alberta.ca/parks/heritageinfocentre/docs/NRSRcomplete

4. Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kizberger, T., Rigling, A., Breshears, D. D., Hogg, E. H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J. H., Allard, G., Running, S. W., Semerci, A., and Cobb, N.: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests, Forest Ecol. Manag., 259, 660–684, 2010.

5. Asner, G. P., Mascaro, J., Anderson, C., Knapp, D. E., Martin, R. E., Kennedy-Bowdoin, T., van Breugel, M., Davies, S., Hall, J. S., Muller-Landau, H. C., Potvin, C., Sousa, W., Wright, J., and Bermingham, E.: High-fidelity national carbon mapping for resource management and REDD+, Carb. Bal, Manage., 8, 1–14, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3