A Comparative Analysis of Remote Sensing Estimation of Aboveground Biomass in Boreal Forests Using Machine Learning Modeling and Environmental Data

Author:

Song Jie1,Liu Xuelu1,Adingo Samuel2,Guo Yanlong3,Li Quanxi1

Affiliation:

1. College of Resources and Environment, Gansu Agricultural University, Lanzhou 730070, China

2. Nanjing Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

3. National Tibetan Plateau Data Center, State Key Laboratory of Tibetan Plateau Earth System and Resource Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China

Abstract

It is crucial to have precise and current maps of aboveground biomass (AGB) in boreal forests to accurately track global carbon levels and develop effective plans for addressing climate change. Remote sensing as a cost-effective tool offers the potential to update AGB maps for boreal forests in real time. This study evaluates different machine learning algorithms, namely Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost), Random Forest (RF), and Support Vector Regression (SVR), for predicting AGB in boreal forests. Conducted in the Qilian Mountains, northwest China, the study integrated field measurements, space-borne LiDAR, optical remote sensing, and environmental data to develop a training dataset. Among 34 variables, 22 were selected for AGB estimation modeling. Our findings revealed that the LightGBM AGB model had the highest level of accuracy (R2 = 0.84, RMSE = 15.32 Mg/ha), outperforming the XGBoost, RF, and SVR AGB models. Notably, the LightGBM AGB model effectively addressed issues of underestimation and overestimation. We also observed that the disparity in accuracy among the models widens with increasing altitude. Remarkably, the LightGBM AGB model consistently demonstrates optimal performance across all elevation gradients, with residuals generally below 25 Mg/ha for low-value overestimation and below −38 Mg/ha for high-value underestimation. The model developed in this study presents a viable and alternative approach for enhancing AGB estimation accuracy in boreal forests based on remote sensing technology.

Funder

Nature Science Foundation of Gansu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3