Quantitative impacts of vertical transport on the long-term trend of nocturnal ozone increase over the Pearl River Delta region during 2006–2019

Author:

Wu Yongkang,Chen WeihuaORCID,You Yingchang,Xie Qianqian,Jia Shiguo,Wang Xuemei

Abstract

Abstract. The Pearl River Delta (PRD) region in southern China has been subject to severe ozone (O3) pollution during daytime and anomalous nocturnal O3 increase (NOI) during nighttime. In this study, the spatiotemporal variation of NOI events in the PRD region from 2006 to 2019 is comprehensively analysed, and the role of vertical transport in the occurrence of NOI events is quantified based on observed surface and vertical O3 and the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5) dataset. The results show that the average annual frequency of NOI events in the whole PRD region during the 14 year period is estimated to be 53 ± 16 d yr−1, with an average of 58 ± 11 µg m−3 for the nocturnal O3 peak (NOP) concentration. Low-level jets (LLJs) are the main meteorological processes triggering NOI events, explaining on average 61 % of NOI events. Annual NOI events exhibit an upward trend before 2011 (4.70 d yr−1) and a downward trend thereafter (−0.72 d yr−1), which is consistent with the annual variation of LLJs (r=0.88, p<0.01). Although the contribution of convective storms (Conv) to NOI events is relatively small with an average value of 11 %, Conv-induced NOI events steadily increased at a rate of 0.26 d yr−1 during this 14 year period due to the impact of urbanisation. Seasonally, a relatively higher frequency of NOI events is observed in spring and autumn, which is consistent with the seasonal pattern of LLJs and maximum daily 8 h average (MDA8) O3. Spatially, NOI events are frequent in the eastern PRD, which agrees well with the spatial distribution of the frequency of LLJs and partially overlaps with the distribution of MDA8 O3 concentration, suggesting that vertical transport plays a more important role in NOI events than daytime O3 concentration. The Weather Research and Forecasting (WRF) model coupled with the Community Multiscale Air Quality (CMAQ) model and the observed vertical O3 profiles are further applied to illustrate the mechanisms of NOI formation caused by LLJs and Conv. The results confirm that both LLJs and Conv trigger NOI events by inducing downdrafts with the difference being that LLJs induce downdrafts by wind shear, while Conv by compensating downdrafts. Through observational and modelling analysis, this study presents the long-term (2006–2019) trends of NOI events in the PRD region and quantifies the contribution of meteorological processes for the first time, emphasising the importance of vertical transport, as well as daytime O3 concentration for the occurrence of NOI events.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3