Life Cycle Characteristics of MCSs in Middle East China Tracked by Geostationary Satellite and Precipitation Estimates

Author:

Ai Yufei1,Li Wanbiao2,Meng Zhiyong2,Li Jun3

Affiliation:

1. Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China, and Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

2. Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

3. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Abstract

Abstract By combining high temporal and spatial resolution Multifunctional Transport Satellite-1R (MTSAT-1R) infrared (IR) images and precipitation data from the Climate Prediction Center morphing technique (CMORPH), this study tracked mesoscale convective systems (MCSs) from May to August in 2008 and 2009 in the middle of east China with an automatic tracking algorithm based on an areal overlapping methodology. This methodology is adjusted to include those MCSs with a relative weak intensity before formation. The unique advantage of combining high temporal and spatial resolution geostationary satellite brightness temperature images and the precipitation measurements for tracking MCSs is that the cloud-top height along with the coverage and the precipitation intensity can be well identified. Results showed that the MCSs formed most frequently in the southwest Henan Province and at the border of four provinces—Shandong, Henan, Anhui, and Jiangsu—which is east of the convergence zone near the terrain’s edge. Locations of the highest cloud tops and of the heaviest precipitation rates did not always match. In addition, the MCSs in the study region tended to first reach the maximum precipitation rate, followed soon by the minimum brightness temperature, then the maximum associated precipitation area, and finally the maximum in system area.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3