Evolution Characteristics of Convective Clouds With Relatively Small Scales Over South China

Author:

Yang Yikun1,Zhao Chuanfeng1ORCID,Wang Yang2ORCID,Sun Yue3,Fan Hao4ORCID,Zhao Xin3,Zhou Yue3

Affiliation:

1. Department of Atmospheric and Oceanic Sciences School of Physics, and China Meteorological Administration Tornado Key Laboratory Peking University Beijing China

2. College of Atmospheric Sciences Lanzhou University Lanzhou China

3. Faculty of Geographical Science Beijing Normal University Beijing China

4. School of Systems Science Beijing Normal University Beijing China

Abstract

AbstractAs a crucial element in the Earth's system, development of convective clouds is still insufficiently understood and simulated in both weather and climate models, particularly for small‐scale regional convective clouds. In this study, a series of convective clouds cases with relatively small scales are selected over south China, and the evolution characteristics of those convective clouds are investigated using high spatiotemporal resolution geostationary satellite data. Statistical results show that the shorter the life cycle or the smaller the area, the higher the proportion of convective clouds. Notably, approximately 79.23% of convective clouds have a life cycle of less than 3 hr, and 63.81% have an area of less than 500 km2 for selected cases. In addition, there are significant differences in the cloud characteristics and meteorological parameters during various convective cloud stages and durations. Nevertheless, the relative proportions of convective clouds at three identified stages remain relatively constant with almost no dependence on duration of convective clouds, which are 33.50%, 23.92%, and 42.58% for the developing, mature, and dissipation stages, respectively. In addition, we find that the cloud‐top cooling rate during the developing stage also affects the characteristics of the later stage of convective clouds. Quantitatively, the average cloud area and duration changed by 157.03 km2 and 0.17 hr when the cloud‐top cooling rate varies by 15 K/h.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3