Vertical ozone formation mechanisms resulting from increased oxidation on the mountainside of Mount Tai, China

Author:

Wu Wanqi1ORCID,Ge Yanzhen2,Wang Yan3,Su Jixin3ORCID,Wang Xinfeng3,Zhou Bin1,Chen Jianmin1ORCID

Affiliation:

1. Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University , Shanghai 200438 , China

2. Tai’an Ecological Environment Protection and Control Center, Tai’an Ecological Environment Bureau , Tai’an 271000 , China

3. School of Environmental Science and Engineering, Research Institute of Environment, Shandong University , Qingdao 266237 , China

Abstract

Abstract The vertical distribution of ozone (O3) within the boundary layer (BL) and its ground-level effects have been extensively studied. However, observational limitations in obtaining high-resolution, real-time data on O3 and its precursors, especially volatile organic compounds (VOCs), have led to a scarcity of research on O3 formation sensitivity and mechanisms. Online measurements for O3, nitrogen oxides (NOx), and VOCs were made on the mountainside of Mount Tai (∼550 m a.s.l.) in China during the summer of 2022 and were compared with the data from a ground-level site. The Master Chemical Mechanism (V3.3.1) was used to uncover a positive correlation between NOx and photochemical reaction rates on the mountainside, marking it as a NOx-limited regime in contrast to the VOC-limited regime identified at surface. On the mountainside, lower NO levels limited hydroxyl radicals (OH) recycling reactions, resulting in earlier O3 peaks and higher concentrations of hydroperoxy radicals (HO2) and organic peroxy radicals (RO2). The arrival of fresh air masses rich in NO accelerated OH radical cycling, enhanced atmospheric oxidization, and significantly impacted surface O3 concentrations though vertical transport. Moreover, NOx reduction scenario simulations show that when considering vertical transport, the peak O3 production rate at the surface is lower due to differences in O3 formation sensitivity vertically. This study highlights the significant sensitivity of O3 formation to NO within the BL, underscoring the potential impact of vertical in situ O3 formation above the ground on surface-level O3 concentrations through vertical exchange, particularly in cities with mountainous terrain.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3