Application of a two-step approach for mapping ice thickness to various glacier types on Svalbard
-
Published:2017-09-01
Issue:5
Volume:11
Page:2003-2032
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Fürst Johannes Jakob, Gillet-Chaulet FabienORCID, Benham Toby J., Dowdeswell Julian A.ORCID, Grabiec Mariusz, Navarro FranciscoORCID, Pettersson RickardORCID, Moholdt Geir, Nuth ChristopherORCID, Sass BjörnORCID, Aas KjetilORCID, Fettweis XavierORCID, Lang Charlotte, Seehaus ThorstenORCID, Braun Matthias
Abstract
Abstract. The basal topography is largely unknown beneath most glaciers and ice caps, and many attempts have been made to estimate a thickness field from other more accessible information at the surface. Here, we present a two-step reconstruction approach for ice thickness that solves mass conservation over single or several connected drainage basins. The approach is applied to a variety of test geometries with abundant thickness measurements including marine- and land-terminating glaciers as well as a 2400 km2 ice cap on Svalbard. The input requirements are kept to a minimum for the first step. In this step, a geometrically controlled, non-local flux solution is converted into thickness values relying on the shallow ice approximation (SIA). In a second step, the thickness field is updated along fast-flowing glacier trunks on the basis of velocity observations. Both steps account for available thickness measurements. Each thickness field is presented together with an error-estimate map based on a formal propagation of input uncertainties. These error estimates point out that the thickness field is least constrained near ice divides or in other stagnant areas. Withholding a share of the thickness measurements, error estimates tend to overestimate mismatch values in a median sense. We also have to accept an aggregate uncertainty of at least 25 % in the reconstructed thickness field for glaciers with very sparse or no observations. For Vestfonna ice cap (VIC), a previous ice volume estimate based on the same measurement record as used here has to be corrected upward by 22 %. We also find that a 13 % area fraction of the ice cap is in fact grounded below sea level. The former 5 % estimate from a direct measurement interpolation exceeds an aggregate maximum range of 6–23 % as inferred from the error estimates here.
Funder
Comisión Interministerial de Ciencia y Tecnología Norges Forskningsråd Deutsches Zentrum für Luft- und Raumfahrt European Space Agency European Research Council Seventh Framework Programme Narodowe Centrum Badań i Rozwoju Helmholtz-Gemeinschaft Deutsche Forschungsgemeinschaft
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference97 articles.
1. Aas, K., Dunse, T., Collier, E., Schuler, T., Berntsen, T., Kohler, J., and Luks, B.: The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere–glacier mass balance model, The Cryosphere, 10, 1089–1104, https://doi.org/10.5194/tc-10-1089-2016, 2016. 2. Atwood, D. K., Meyer, F., and Arendt, A.: Using L-band SAR coherence to delineate glacier extent, Can. J. Remote Sens., 36, S186–S195, https://doi.org/10.5589/m10-014, 2010. 3. Berthier, E., Schiefer, E., Clarke, G., and Menounos, B.: Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery, Nat. Geosci., 3, 92–95, https://doi.org/10.1038/ngeo737, 2010. 4. Berthier, E., Cabot, V., Vincent, C., and Six, D.: Decadal Region-Wide and Glacier-Wide Mass Balances Derived from Multi-Temporal ASTER Satellite Digital Elevation Models. Validation over the Mont-Blanc Area, Front. Earth Sci., 4, 1–16, https://doi.org/10.3389/feart.2016.00063, 2016. 5. Bishop, M., Olsenholler, J., Shroder, J., Barry, R., Raup, B., Bush, A., Copland, L., Dwyer, J., Fountain, A., Haeberli, W., Kääb, A., Paul, F., Hall, D., Kargel, J., Molnia, B., Trabant, D., and Wessels, R.: Global Land Ice Measurements from Space (GLIMS): Remote Sensing and GIS Investigations of the Earth's Cryosphere, Geocarto Int., 19, 57–84, https://doi.org/10.1080/10106040408542307, 2004.
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|