Mesoscale observations of temperature and salinity in the Arctic Transpolar Drift: a high-resolution dataset from the MOSAiC Distributed Network

Author:

Hoppmann MarioORCID,Kuznetsov IvanORCID,Fang Ying-Chih,Rabe BenjaminORCID

Abstract

Abstract. Measurements targeting mesoscale and smaller-scale processes in the ice-covered part of the Arctic Ocean are sparse in all seasons. As a result, there are significant knowledge gaps with respect to these processes, particularly related to the role of eddies and fronts in the coupled ocean–atmosphere–sea ice system. Here we present a unique observational dataset of upper ocean temperature and salinity collected by a set of buoys installed on ice floes as part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Distributed Network. The multi-sensor systems, each equipped with five temperature and salinity recorders on a 100 m long inductive modem tether, drifted together with the main MOSAiC ice camp through the Arctic Transpolar Drift between October 2019 and August 2020. They transmitted hydrographic in situ data via the iridium satellite network at 10 min intervals. While three buoys failed early due to ice dynamics, five of them recorded data continuously for 10 months. A total of four units were successfully recovered in early August 2020, additionally yielding internally stored instrument data at 2 min intervals. The raw data were merged, processed, quality controlled, and validated using independent measurements also obtained during MOSAiC. Compilations of the raw and processed datasets are publicly available at https://doi.org/10.1594/PANGAEA.937271 (Hoppmann et al., 2021i) and https://doi.org/10.1594/PANGAEA.940320 (Hoppmann et al., 2022i), respectively. As an important part of the MOSAiC physical oceanography program, this unique dataset has many synergies with the manifold co-located observational datasets and is expected to yield significant insights into ocean processes and to contribute to the validation of high-resolution numerical simulations. While this dataset has the potential to contribute to submesoscale process studies, this paper mainly highlights selected preliminary findings on mesoscale processes.

Funder

Natural Environment Research Council

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research

Helmholtz Association

Bundesministerium für Bildung und Forschung

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3