Leaf-scale quantification of the effect of photosynthetic gas exchange on Δ<sup>17</sup>O of atmospheric CO<sub>2</sub>

Author:

Adnew Getachew AgmuasORCID,Pons Thijs L.ORCID,Koren GerbrandORCID,Peters WouterORCID,Röckmann ThomasORCID

Abstract

Abstract. Understanding the processes that affect the triple oxygen isotope composition of atmospheric CO2 during gas exchange can help constrain the interaction and fluxes between the atmosphere and the biosphere. We conducted leaf cuvette experiments under controlled conditions using three plant species. The experiments were conducted at two different light intensities and using CO2 with different Δ17O. We directly quantify the effect of photosynthesis on Δ17O of atmospheric CO2 for the first time. Our results demonstrate the established theory for δ18O is applicable to Δ17O(CO2) at leaf level, and we confirm that the following two key factors determine the effect of photosynthetic gas exchange on the Δ17O of atmospheric CO2. The relative difference between Δ17O of the CO2 entering the leaf and the CO2 in equilibrium with leaf water and the back-diffusion flux of CO2 from the leaf to the atmosphere, which can be quantified by the cm∕ca ratio, where ca is the CO2 mole fraction in the surrounding air and cm is the one at the site of oxygen isotope exchange between CO2 and H2O. At low cm∕ca ratios the discrimination is governed mainly by diffusion into the leaf, and at high cm∕ca ratios it is governed by back-diffusion of CO2 that has equilibrated with the leaf water. Plants with a higher cm∕ca ratio modify the Δ17O of atmospheric CO2 more strongly than plants with a lower cm∕ca ratio. Based on the leaf cuvette experiments, the global value for discrimination against Δ17O of atmospheric CO2 during photosynthetic gas exchange is estimated to be -0.57±0.14 ‰ using cm∕ca values of 0.3 and 0.7 for C4 and C3 plants, respectively. The main uncertainties in this global estimate arise from variation in cm∕ca ratios among plants and growth conditions.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3