Uncoupling of stomatal conductance and photosynthesis at high temperatures: mechanistic insights from online stable isotope techniques

Author:

Diao Haoyu1ORCID,Cernusak Lucas A.2ORCID,Saurer Matthias1ORCID,Gessler Arthur13ORCID,Siegwolf Rolf T. W.1ORCID,Lehmann Marco M.1ORCID

Affiliation:

1. Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf 8903 Switzerland

2. College of Science and Engineering James Cook University Cairns Qld 4879 Australia

3. Institute of Terrestrial Ecosystems ETH Zurich Zurich 8092 Switzerland

Abstract

Summary The strong covariation of temperature and vapour pressure deficit (VPD) in nature limits our understanding of the direct effects of temperature on leaf gas exchange. Stable isotopes in CO2 and H2O vapour provide mechanistic insight into physiological and biochemical processes during leaf gas exchange. We conducted combined leaf gas exchange and online isotope discrimination measurements on four common European tree species across a leaf temperature range of 5–40°C, while maintaining a constant leaf‐to‐air VPD (0.8 kPa) without soil water limitation. Above the optimum temperature for photosynthesis (30°C) under the controlled environmental conditions, stomatal conductance (gs) and net photosynthesis rate (An) decoupled across all tested species, with gs increasing but An decreasing. During this decoupling, mesophyll conductance (cell wall, plasma membrane and chloroplast membrane conductance) consistently and significantly decreased among species; however, this reduction did not lead to reductions in CO2 concentration at the chloroplast surface and stroma. We question the conventional understanding that diffusional limitations of CO2 contribute to the reduction in photosynthesis at high temperatures. We suggest that stomata and mesophyll membranes could work strategically to facilitate transpiration cooling and CO2 supply, thus alleviating heat stress on leaf photosynthetic function, albeit at the cost of reduced water‐use efficiency.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3