Comparisons of WRF/Chem simulations in Mexico City with ground-based RAMA measurements during the 2006-MILAGRO

Author:

Zhang Y.,Dubey M. K.,Olsen S. C.,Zheng J.,Zhang R.

Abstract

Abstract. Simulations using the fully coupled WRF/Chem (Weather Research and Forecasting – Chemistry) model at 3-km resolution in Mexico City have been performed to examine the temperature, relative humidity, wind, and gaseous criteria pollutants (CO, O3, NO, NO2, and NOy) during the MCMA-2006/MILAGRO field campaign. Comparison of the model simulations with measurements from the ground-based air quality monitoring network (RAMA) is presented. The model resolves reasonably well the observed surface temperature, relative humidity and wind speed; however, large discrepancies are identified between the simulated and the observed surface wind direction for wind speeds below 2 m s−1. The simulated chemical species concentrations (CO, O3, NO, NO2, and NOy) compare favorably with the observations. Simulated O3 concentrations agree especially well with the observations. The simulated 10 VOC species compare generally favorably with the observations at the T0 supersite although lower correlation coefficients and larger biases exist for propene, acetone and propanal, isoprene, and c10-aromatics when compared to the other VOC species. The model performs much better during daytime than nighttime for both chemical species and meteorological variables, although the model tends to underestimate daytime temperature and relative humidity. Simulations using combinations of the available PBL schemes and land surface models (LSMs) do not show a preferred combination in reproducing the observations. The simulated meteorological fields under the O3-South, O3-North and EI Norte weather episodes exhibit similar correlation coefficients and biases for the same variable. However, the model performs well for the O3-South episode but inferiorly for the El Norte events in resolving the observed chemical species.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3