Urban WRF-Chem evaluation over a high-altitude tropical city

Author:

Noyola Poblete José Miguel, ,García Reynoso José Agustín,

Abstract

Morphology and grid resolution are important aspects that need to be considered in urban modeling applications, since together with buildings they induce a direct effect on wind and dispersion of pollutants over urban areas. In this study, we evaluate high-resolution simulations of a multi-layer urban canopy model (UCM) based on a local climate zone (LCZ) classification coupled to the Weather Research and Forecasting model with Chemistry (WRF-Chem), in the local meteorological conditions and air quality pollutants of a highly urbanized megacity. This modeling system, known as Building Effect Parameterization (BEP) considers the effects of buildings’ vertical and horizontal surfaces on the momentum that considerably impacts the lower part of the urban boundary layer (UBL). Simulations of the urbanized model (WRFu) were compared against a Noah land surface model (Noah LSM) with no urban physics (WRF) for the same period. It was observed that the LCZ classification and urban parameterization coupled to the model have a direct influence in meteorological parameters and pollutant concentrations. Urban simulations of temperature and wind speed showed higher sensitivity to initial and boundary conditions, increasing the correlation with observations and reducing the bias error. An important observation is that emissions drive air quality concentrations despite the improvements in local meteorology.

Publisher

Universidad Nacional Autonoma de Mexico

Subject

Pollution,Waste Management and Disposal

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3