Comparison and evaluation of updates to WRF-Chem (v3.9) biogenic emissions using MEGAN

Author:

Morichetti MauroORCID,Madronich Sasha,Passerini Giorgio,Rizza Umberto,Mancinelli Enrico,Virgili Simone,Barth Mary

Abstract

Abstract. Biogenic volatile organic compounds (BVOCs) emitted from the natural ecosystem are highly reactive and can thus impact air quality and aerosol radiative forcing. BVOC emission models (e.g., Model of Emissions of Gases and Aerosols from Nature – MEGAN) in global and regional chemical transport models still have large uncertainties in estimating biogenic trace gases because of uncertainties in emission activity factors, specification of vegetation type, and plant emission factors. This study evaluates a set of updates made to MEGAN v2.04 in the Weather Research and Forecasting model coupled with chemistry (WRF-Chem version 3.9). Our study considers four simulations for each update made to MEGAN v2.04: (i) a control run with no changes to MEGAN, (ii) a simulation with the emission activity factors modified following MEGAN v2.10, (iii) a simulation considering the changes to the plant functional type (PFT) emission factor, and (iv) a simulation with the isoprene emission factor calculated within the MEGAN module instead of being prescribed by the input database. We evaluate two regions, Europe and the southeastern United States, by comparing WRF-Chem results to ground-based monitoring observations in Europe (i.e., AirBase database) and aircraft observations obtained during the NOMADSS field campaign. We find that the updates to MEGAN v2.04 in WRF-Chem caused overpredictions in ground-based ozone concentrations in Europe and in isoprene mixing ratios compared to aircraft observations in the southeastern US. The update in emission activity factors caused the largest biases. These results suggest that further experimental and modeling studies should be conducted to address potential shortcomings in BVOC emission models.

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3