Impact of local gravity wave forcing in the lower stratosphere on the polar vortex stability: effect of longitudinal displacement
-
Published:2020-01-23
Issue:1
Volume:38
Page:95-108
-
ISSN:1432-0576
-
Container-title:Annales Geophysicae
-
language:en
-
Short-container-title:Ann. Geophys.
Author:
Samtleben Nadja, Kuchař AlešORCID, Šácha PetrORCID, Pišoft PetrORCID, Jacobi ChristophORCID
Abstract
Abstract. The effects of gravity wave (GW) breaking hotspots in the lower stratosphere, especially the role of their longitudinal distribution, are evaluated through a sensitivity study by using a simplified middle atmosphere circulation model.
For the position of the local GW hotspot, we first selected a fixed latitude range between 37.5 and 62.5∘ N and a longitude range from 112.5 to 168.75∘ E, as well as an altitude range between 18 and 30 km.
This confined GW hotspot was then shifted in longitude by 45∘ steps, so that we created eight artificial GW hotspots in total.
Strongly dependent on the location of the respective GW hotspot with regard to the phase of the stationary planetary wave of wavenumber 1 (SPW 1) generated in the model, the local GW forcing may interfere constructively or destructively with the modeled SPW 1.
GW hotspots, which are located in North America near the Rocky Mountains, lead to an increase in the SPW 1 amplitude and EP flux, while hotspots located near the Caucasus, the Himalayas or the Scandinavian region lead to a decrease in these parameters.
Thus, the polar vortex is less (Caucasus and Himalayan hotspots) or more weakened (Rocky Mountains hotspot) by the prevailing SPW activity.
Because the local GW forcing generally suppresses wave propagation at midlatitudes, the SPWs 1 propagate into the polar region, where the refractive index turned to positive values for the majority of the artificial GW hotspots.
An additional source of SPW 1 may be local instabilities indicated by the reversal in the meridional potential vorticity gradient in the polar region in connection with a positive EP divergence.
In most cases, the SPWs 1 are breaking in the polar region and maintain the deceleration and, thus, the weakening of the polar vortex.
While the SPWs 1 that form when the GW hotspots are located above North America propagate through the polar region into the middle atmosphere, the SPWs 1 in the remaining GW hotspot simulations were not able to propagate further upwards because of a negative refractive index above the positive refractive index anomaly in the polar region.
GW hotspots, which are located near the Himalayas, influence the mesosphere–lower thermosphere region because of possible local instabilities in the lower mesosphere generating additional SPWs 1, which propagate upwards into the mesosphere.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Copernicus GmbH
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Reference52 articles.
1. Albers, J. R. and Birner, T.: Vortex Preconditioning due to Planetary and
Gravity Waves prior to Sudden Stratospheric Warmings, J. Atmos. Sci., 71,
4028–4054, https://doi.org/10.1175/JAS-D-14-0026.1, 2014. a, b 2. Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics, ISBN 0-12-058576-6, Academic Press, San Diego, 1987. a, b 3. Beldon, C. L. and Mitchell, N. J.: Gravity wave-tidal interactions in the
mesosphere and lower thermosphere over Rothera, Antarctica (68∘ S,
68∘ W), J. Geophys. Res.-Atmos., 115, D18101, https://doi.org/10.1029/2009JD013617,
2010. a 4. Charney, J. G. and Stern, M. E.: On the Stability of Internal Baroclinic Jets
in a Rotating Atmosphere, J. Atmos. Sci., 19, 159–172,
https://doi.org/10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2, 1962. a, b 5. Costantino, L., Heinrich, P., Mzé, N., and Hauchecorne, A.: Convective gravity wave propagation and breaking in the stratosphere: comparison between WRF model simulations and lidar data, Ann. Geophys., 33, 1155–1171, https://doi.org/10.5194/angeo-33-1155-2015, 2015. a
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|