Observations of Gravity Wave Refraction and Its Causes and Consequences

Author:

Geldenhuys M.12ORCID,Kaifler B.3ORCID,Preusse P.1,Ungermann J.14ORCID,Alexander P.5ORCID,Krasauskas L.1ORCID,Rhode S.1ORCID,Woiwode W.6ORCID,Ern M.1ORCID,Rapp M.3ORCID,Riese M.1ORCID

Affiliation:

1. Forschungszentrum Jülich Institute of Energy and Climate Research Jülich Germany

2. South African Weather Service Pretoria South Africa

3. Deutsches Zentrum für Luft‐ und Raumfahrt Institut für Physik der Atmosphäre Oberpfaffenhofen Germany

4. JARA Forschungszentrum Jülich GmbH Jülich Germany

5. Instituto de Física de Buenos Aires CONICET Buenos Aires Argentina

6. Karlsruhe Institute of Technology Institute of Meteorology and Climate Research Karlsruhe Germany

Abstract

AbstractHorizontal gravity wave (GW) refraction was observed around the Andes and Drake Passage during the SouthTRAC campaign. GWs interact with the background wind through refraction and dissipation. This interaction helps to drive midatmospheric circulations and slows down the polar vortex by taking GW momentum flux (GWMF) from one location to another. The SouthTRAC campaign was composed to gain improved understanding of the propagation and dissipation of GWs. This study uses observational data from this campaign collected by the German High Altitude Long Range research aircraft on 12 September 2019. During the campaign a minor sudden stratospheric warming in the southern hemisphere occurred, which heavily influenced GW propagation and refraction and thus also the location and amount of GWMF deposition. Observations include measurements from below the aircraft by Gimballed Limb Observer for Radiance Imaging of the Atmosphere and above the aircraft by Airborne Lidar for the Middle Atmosphere. Refraction is identified in two different GW packets as low as ≈4 km and as high as 58 km. One GW packet of orographic origin and one of nonorographic origin is used to investigate refraction. Observations are supplemented by the Gravity‐wave Regional Or Global Ray Tracer, a simplified mountain wave model, ERA5 data and high‐resolution (3 km) WRF data. Contrary to some previous studies we find that refraction makes a noteworthy contribution in the amount and the location of GWMF deposition. This case study highlights the importance of refraction and provides compelling arguments that models should account for this.

Funder

Bundesministerium für Bildung und Forschung

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3