Global Stratospheric Properties of Gravity Waves From 1 Year of Radio Occultations

Author:

Alexander P.1ORCID,de la Torre A.2ORCID,Schmidt T.3ORCID

Affiliation:

1. Instituto de Física de Buenos Aires CONICET Ciudad Universitaria Pabellón 1 Buenos Aires Argentina

2. LIDTUA Facultad de Ingeniería Universidad Austral and CONICET Pilar Argentina

3. Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Potsdam Germany

Abstract

AbstractGravity waves (GW) transport momentum flux (MF) and energy across the lower, middle and upper atmosphere. Global Navigation Satellite System (GNSS) radio occultation (RO) is one of the measuring techniques used onboard satellites to provide vertical temperature profiles with global and permanent coverage. These retrievals may be applied in the study of GW. Most of the analysis methods provide absolute GWMF but are missing its net direction. This happens because the procedures can deduce the orientation but not the propagation sign of GW and hence the full direction of MF. We apply here a method that allows the net calculation with four close in space and time RO soundings (quartets). We use about 10,000 daily retrievals from 1 March 2022 to 28 February 2023 to study the seasonal and latitudinal characteristics of net GWMF in the height interval from 20 to 35 km. About 600 quartets were found. The calculated zonal MF and drag exhibited negative minima at middle and high latitudes during winter in the Southern Hemisphere. This well‐known characteristic is usually mainly assigned to orographic sources. A similar intensity in zonal MF and drag is found during the same season at low latitudes. Meridional components are generally less significant. Besides finding the correct sign of the GWMF and the corresponding forcing on the mean flow, the quartets method also allows the determination of the horizontal and vertical wavelengths, the amplitude and sign of the vertical wave phase velocity and the intrinsic frequencies. The global statistics of these parameters are shown and each one exhibits a similar distribution shape across latitude bands. Large differences in the frequency of cases in vertical phase velocity sign appear only at low and high positive latitudes. The most even distribution of GW intrinsic frequency is found at low latitudes. We estimate that absolute MF calculations by methods assuming only upward GW propagation may produce a bias not larger than 40%. The increase of satellite measuring devices achieved in the last years due to the release of new missions led to a high spatial and temporal density of profiles that may allow the attainment of net GWMF climatologies over a seasonal time scale and about 4,000 km latitude bands but this performance may be even improved if the amount of retrievals continues to rise.

Funder

Consejo Nacional de Investigaciones Científicas y Técnicas

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3