Mutual Interference of Local Gravity Wave Forcings in the Stratosphere

Author:

Samtleben Nadja,Kuchař AlešORCID,Šácha PetrORCID,Pišoft PetrORCID,Jacobi ChristophORCID

Abstract

Gravity wave (GW) breaking and associated GW drag is not uniformly distributed among latitudes and longitudes. In particular, regions of enhanced GW breaking, so-called GW hotspots, have been identified, major Northern Hemisphere examples being located above the Rocky Mountains, the Himalayas and the East Asian region. These hotspots influence the middle atmosphere circulation both individually and in combination. Their interference is here examined by performing simulations including (i) the respective single GW hotspots, (ii) two GW hotspots, and (iii) all three GW hotspots with a simplified global circulation model. The combined GW hotspots lead to a modification of the polar vortex in connection with a zonal mean flow decrease and an increase of the temperature at higher latitudes. The different combinations of GW hotspots mainly prevent the stationary planetary wave (SPW) 1 from propagating upward at midlatitudes leading to a decrease in energy and momentum transfer in the middle atmosphere caused by breaking SPW 1, and in turn to an acceleration of the zonal mean flow at lower latitudes. In contrast, the GW hotspot above the Rocky Mountains alone causes an increase in SPW 1 amplitude and Eliassen–Palm flux (EP flux), inducing enhanced negative EP divergence, decelerating the zonal mean flow at higher latitudes. Consequently, none of the combinations of different GW hotspots is comparable to the impact of the Rocky Mountains GW hotspot alone. The reason is that the GW hotspots mostly interfere nonlinearly. Depending on the longitudinal distance between two GW hotspots, the interference between the combined Rocky Mountains and East Asian GW hotspots is more additive than the interference between the combined Rocky Mountains and Himalaya GW hotspots. While the Rocky Mountains and the East Asian GW hotspots are longitudinally displaced by 105°, the Rocky Mountains are shifted by 170° to the Himalayas. Moreover, while the East Asian and the Himalayas are located side by side, the interference between these GW hotspots is the most nonlinear because they are latitudinally displaced by 20°. In general, the SPW activity, e.g., represented in SPW amplitudes, EP flux or Plumb flux, is strongly reduced, when the GW hotspots are interacting with each other. Thus, the interfering GW hotspots mostly have a destructive effect on SPW propagation and generation.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3