Seasonal variations in fire conditions are important drivers in the trend of aerosol optical properties over the south-eastern Atlantic

Author:

Che HaochiORCID,Segal-Rozenhaimer Michal,Zhang Lu,Dang CarolineORCID,Zuidema PaquitaORCID,Sedlacek III Arthur J.ORCID,Zhang Xiaoye,Flynn Connor

Abstract

Abstract. From June to October, southern Africa produces one-third of the global biomass burning (BB) emissions by widespread fires. BB aerosols are transported westward over the south-eastern Atlantic with the mid-tropospheric winds, resulting in significant radiative effects. Ascension Island (ASI) is located midway between Africa and South America. From June 2016 to October 2017, a 17-month in situ observation campaign on ASI found a low single-scattering albedo (SSA) as well as a high mass absorption cross-section of black carbon (MACBC), demonstrating the strong absorbing marine boundary layer in the south-eastern Atlantic. Here we investigate the monthly variations of critical optical properties of BB aerosols, i.e. SSA and MACBC, during the BB seasons and the driving factors behind these variations. Both SSA and MACBC increase from June to August and decrease in September and October. The average SSA during the BB seasons is 0.81 at 529 nm wavelength, with the highest mean ∼ 0.85 in October and the lowest ∼ 0.78 in August. The absorption enhancement (Eabs) derived from the MACBC shows similar trends with SSA, with the average during the whole of the BB seasons at ∼ 1.96 and ∼ 2.07 in 2016 and 2017, respectively. As the Eabs is higher than the ∼ 1.5 commonly adopted value by climate models, this result suggests the marine boundary layer in the south-eastern Atlantic is more absorbing than model simulations. We find the enhanced ratio of BC to CO (ΔBC/ΔCO, equal to BC/ΔCO as the BC background concentration is considered to be 0) is well correlated with SSA and MACBC, providing a simple way to estimate the aerosol optical characteristics in the south-eastern Atlantic. The exponential function we proposed can approximate SSA and MACBC with BC/ΔCO, and when BC/ΔCO is small it can capture the rapid growth of SSA as BC/ΔCO decreases. BC/ΔCO is influenced by combustion conditions and aerosol scavenging. From the analysis of the location of BB, the primary source fuel, the water content in the fuel, combined with the mean cloud cover and precipitation in the transport areas of the BB plume, we conclude that the increase in BC/ΔCO from June to August is likely to be caused by burning becoming more flaming. The reduction in the water content of fuels may be responsible for the change in the burning conditions from June to August. The decrease in BC/ΔCO in September and October may be caused by two factors, one being a lower proportion of flaming conditions, possibly associated with a decrease in mean surface wind speed in the burning area, and the other being an increase in precipitation in the BB transport pathway, leading to enhanced aerosol scavenging, which ultimately results in an increase in SSA and MACBC.

Funder

U.S. Department of Energy

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3