Aerosol‐Correlated Cloud Activation for Clean Conditions in the Tropical Atlantic Boundary Layer During LASIC

Author:

Dedrick Jeramy L.1ORCID,Russell Lynn M.1ORCID,Sedlacek Arthur J.2ORCID,Kuang Chongai2,Zawadowicz Maria A.2ORCID,Lubin Dan1ORCID

Affiliation:

1. Scripps Institution of Oceanography University of California San Diego La Jolla CA USA

2. Environmental and Climate Sciences Department Brookhaven National Laboratory Upton NY USA

Abstract

AbstractAerosol measurements during the DOE ARM Layered Atlantic Smoke Interactions with Clouds (LASIC) campaign were used to quantify the differences between clean and smoky cloud condensation nuclei (CCN) budgets. Accumulation‐mode particles accounted for ∼70% of CCN at supersaturations <0.3% in clean and smoky conditions. Aitken‐mode particles contributed <20% and sea‐spray‐mode particles <10% at supersaturations <0.3%, but at supersaturations >0.3% Aitken particles contributions increased to 30%–40% of clean CCN. For clean conditions, the Hoppel minimum diameter was correlated to the accumulation‐mode number concentration, indicating aerosol‐correlated cloud activation was controlling the lower diameter cutoff for which particles serve as CCN. For smoky conditions, the contributions of Aitken particles increase and the correlation of cloud activation to accumulation‐mode particles is masked by the lower‐hygroscopicity smoke. These results provide the first multi‐month in situ quantitative constraints on the role of aerosol number size distributions in controlling cloud activation in the tropical Atlantic boundary layer.

Funder

U.S. Department of Energy

Office of Science

Biological and Environmental Research

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3