Vertical structure of a springtime smoky and humid troposphere over the southeast Atlantic from aircraft and reanalysis

Author:

Pistone KristinaORCID,Wilcox Eric M.ORCID,Zuidema PaquitaORCID,Giordano Marco,Podolske James,LeBlanc Samuel E.ORCID,Kacenelenbogen Meloë,Howell Steven G.,Freitag SteffenORCID

Abstract

Abstract. The springtime atmosphere over the southeast Atlantic Ocean (SEA) is subjected to a consistent layer of biomass burning (BB) smoke from widespread fires on the African continent. An elevated humidity signal is coincident with this layer, consistently proportional to the amount of smoke present. The combined humidity and BB aerosol has potentially significant radiative and dynamic impacts. Here, we use aircraft-based observations from the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) deployments in conjunction with reanalyses to characterize covariations in humidity and BB smoke across the SEA. The observed plume–vapor relationship, and its agreement with the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5) and Copernicus Atmosphere Monitoring Service (CAMS) reanalysis, persists across all observations, although the magnitude of the relationship varies as the season progresses. Water vapor is well represented by the reanalyses, while CAMS tends to underestimate carbon monoxide especially under high BB. While CAMS aerosol optical depth (AOD) is generally overestimated relative to ORACLES AOD, the observations show a consistent relationship between carbon monoxide (CO) and aerosol extinction, demonstrating the utility of the CO tracer to understanding vertical aerosol distribution. We next use k-means clustering of the reanalyses to examine multi-year seasonal patterns and distributions. We identify canonical profile types of humidity and of CO, allowing us to characterize changes in vapor and BB atmospheric structures, and their impacts as they covary. While the humidity profiles show a range in both total water vapor concentration and in vertical structure, the CO profiles primarily vary in terms of maximum concentration, with similar vertical structures in each. The distribution of profile types varies spatiotemporally across the SEA region and through the season, ranging from largely one type in the northeast and southwest to more evenly distributed between multiple types where air masses meet in the middle of the SEA. These distributions follow patterns of transport from the humid, smoky source region (greatest influence in the northeast of the SEA) and the seasonal changes in both humidity and smoke (increasing and decreasing through the season, respectively). With this work, we establish a framework for a more complete analysis of the broader radiative and dynamical effects of humid aerosols over the SEA.

Funder

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3