Diurnal evolution of negative atmospheric ions above the boreal forest: from ground level to the free troposphere
-
Published:2022-07-05
Issue:13
Volume:22
Page:8547-8577
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Beck Lisa J.ORCID, Schobesberger SiegfriedORCID, Junninen Heikki, Lampilahti Janne, Manninen Antti, Dada LubnaORCID, Leino Katri, He Xu-ChengORCID, Pullinen IidaORCID, Quéléver Lauriane L. J.ORCID, Franck AnnaORCID, Poutanen Pyry, Wimmer DanielaORCID, Korhonen Frans, Sipilä Mikko, Ehn MikaelORCID, Worsnop Douglas R., Kerminen Veli-MattiORCID, Petäjä TuukkaORCID, Kulmala MarkkuORCID, Duplissy JonathanORCID
Abstract
Abstract. At SMEAR II research station in Hyytiälä, located in the Finnish boreal forest, the process of new particle formation and the role of ions has been investigated for almost 20 years near the ground and at canopy level. However, above SMEAR II, the vertical distribution and diurnal variation of these different atmospheric ions are poorly characterized. In this study, we assess the atmospheric ion composition in the stable boundary layer, residual layer, mixing layer, and free troposphere, and the evolution of these atmospheric ions due to photochemistry and turbulent mixing through the day. To measure the vertical profile of atmospheric ions, we developed a tailored set-up for online mass spectrometric measurements, capable of being deployed in a Cessna 172 with minimal modifications. Simultaneously, instruments dedicated to aerosol properties made measurements in a second Cessna. We conducted a total of 16 measurement flights in May 2017, during the spring, which is the most active new particle formation season. A flight day typically consisted of three distinct flights through the day (dawn, morning, and afternoon) to observe the diurnal variation and at different altitudes (from 100 to 3200 m above ground), to capture the boundary layer development from the stable boundary layer, residual layer to mixing layer, and the free troposphere. Our observations showed that the ion composition is distinctly different in each layer and depends on the air mass origin and time of the day. Before sunrise, the layers are separated from each other and have their own ion chemistry. We observed that the ions present within the stable layer are of the same composition as the ions measured at the canopy level. During daytime when the mixing layer evolved and the compounds are vertically mixed, we observed that highly oxidized organic molecules are distributed to the top of the boundary layer. The ion composition in the residual layer varies with each day, showing similarities with either the stable boundary layer or the free troposphere. Finally, within the free troposphere, we detected a variety of carboxylic acids and ions that are likely containing halogens, originating from the Arctic Sea.
Funder
Academy of Finland European Research Council European Regional Development Fund Estonian Research Competency Council
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference85 articles.
1. Aalto, P., Hämeri, K., Becker, E., Weber, R., Salm, J., Mäkelä, J. M.,
Hoell, C., O’dowd, C. D., Hansson, H.-C., Väkevä, M., Koponen, I. K.,
Buzorius, G., and Kulmala, M.: Physical characterization of aerosol particles
during nucleation events, Tellus B, 53,
344–358, https://doi.org/10.3402/tellusb.v53i4.17127, 2001. a 2. Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K.,
Kupiainen-Määttä, O., Praplan, A. P., Adamov, A., Amorim, A., Bianchi, F.,
Breitenlechner, M., David, A., Dommen, J., Donahue, N. M., Downard, A.,
Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R.,
Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen, T., Junninen,
H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurtén, T., Kvashin,
A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M., Leppä, J., Loukonen, V.,
Makhmutov, V., Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T., Onnela,
A., Petäjä, T., Riccobono, F., Riipinen, I., Rissanen, M., Rondo, L.,
Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S., Schnitzhofer, R.,
Seinfeld, J. H., Simon, M., Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé,
A., Tröstl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen,
A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H., Williamson, C.,
Wimmer, D., Ye, P., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J.,
Baltensperger, U., Worsnop, D. R., Vehkamäki, H., and Kirkby, J.: Molecular
understanding of sulphuric acid–amine particle nucleation in the
atmosphere, Nature, 502, 359–363, https://doi.org/10.1038/nature12663, 2013. a 3. Arnold, F.: Atmospheric Aerosol and Cloud Condensation Nuclei
Formation: A Possible Influence of Cosmic Rays?, Space Sci.
Rev., 125, 169–186, https://doi.org/10.1007/s11214-006-9055-4, 2006. a, b 4. Baccarini, A., Karlsson, L., Dommen, J., Duplessis, P., Vüllers, J., Brooks,
I. M., Saiz-Lopez, A., Salter, M., Tjernström, M., Baltensperger, U.,
Zieger, P., and Schmale, J.: Frequent new particle formation over the high
Arctic pack ice by enhanced iodine emissions, Nat. Commun., 11,
4924, https://doi.org/10.1038/s41467-020-18551-0, 2020. a, b 5. Baltensperger, U., Dommen, J., Alfarra, M. R., Duplissy, J., Gaeggeler, K.,
Metzger, A., Facchini, M. C., Decesari, S., Finessi, E., Reinnig, C., Schott,
M., Warnke, J., Hoffmann, T., Klatzer, B., Puxbaum, H., Geiser, M., Savi, M.,
Lang, D., Kalberer, M., and Geiser, T.: Combined Determination of the
Chemical Composition and of Health Effects of Secondary Organic
Aerosols: The POLYSOA Project, J. Aerosol Me.
Pulm. D., 21, 145–154, https://doi.org/10.1089/jamp.2007.0655, 2008. a
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|