Examining the vertical heterogeneity of aerosols over the Southern Great Plains

Author:

Wang YangORCID,Bagya Ramesh Chanakya,Giangrande Scott E.ORCID,Fast Jerome,Gong XiandaORCID,Zhang JiaoshiORCID,Tolga Odabasi Ahmet,Oliveira Marcus Vinicius Batista,Matthews AlyssaORCID,Mei FanORCID,Shilling John E.ORCID,Tomlinson JasonORCID,Wang DieORCID,Wang JianORCID

Abstract

Abstract. Atmospheric aerosols affect the global energy budget by scattering and absorbing sunlight (direct effects) and by changing the microphysical structure, lifetime, and coverage of clouds (indirect effects). Both aerosol direct and indirect effects are affected by the vertical distribution of aerosols in the atmosphere, which is further influenced by a range of processes, such as aerosol dynamics, long-range transport, and entrainment. However, many observations of these processes are based on ground measurements, limiting our ability to understand the vertical distribution of aerosols and simulate their impact on clouds and climate. In this work, we examined the vertical heterogeneity of aerosols over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) using data collected from the Holistic Interactions of Shallow Clouds, Aerosols and Land Ecosystems (HI-SCALE) campaign. The vertical profiles of meteorological and aerosol physiochemical properties up to 2500 m above are examined based on the 38 flights conducted during the HI-SCALE campaign. The aerosol properties over the SGP show strong vertical heterogeneity and seasonal variabilities. The aerosol concentrations at the surface are the highest due to strong emissions at ground level. In general, the mode diameter of aerosols during summer (∼ 100 nm) is larger than that during spring (∼ 30 nm), a result of enhanced condensational growth due to enriched volatile organic compounds in summer. The concentration of aerosols below 30 nm in the boundary layer (BL) (e.g., below 1000 m) during spring is higher than that during summer, a result of the stronger new particle formation (NPF) events due to the reduced condensation sink in spring. In the BL, the size of the aerosols gradually increases with altitude due to condensational growth and cloud processing. However, the chemical composition of the aerosols remained similar, with organics and sulfates representing 59.8 ± 2.2 % and 22.7 ± 2.1 %, respectively, of the total mass in the BL. Through the vertical profiles of aerosol properties, we observed NPF events in the upper BL during 7 out of 38 research flights, where the newly formed particles continue to grow as they are mixed down to the surface. There is also an indication that deep convection brings aerosols from the free troposphere (FT) to the surface, where they grow to contribute to the cloud condensation nuclei (CCN). Overall, the vertical heterogeneity of aerosols over the SGP is influenced by aerosol dynamics (new particle formation, growth, and cloud processing) and transport processes (mixing in the BL, long-range transport, entrainment, and convective downward transport). Case studies showing the influence of these factors are discussed.

Funder

Biological and Environmental Research

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3