Monitoring Arctic thin ice: a comparison between CryoSat-2 SAR altimetry data and MODIS thermal-infrared imagery

Author:

Müller Felix L.ORCID,Paul StephanORCID,Hendricks StefanORCID,Dettmering DeniseORCID

Abstract

Abstract. Areas of thin sea ice in the polar regions not only are experiencing the highest rate of sea-ice production but also are, therefore, important hot spots for ocean ventilation as well as heat and moisture exchange between the ocean and the atmosphere. Through co-location of (1) an unsupervised waveform classification (UWC) approach applied to CryoSat-2 radar waveforms with (2) Moderate Resolution Imaging Spectroradiometer-derived (MODIS) thin-ice-thickness estimates and (3) Sentinel-1A/B synthetic-aperture radar (SAR) reference data, thin-ice-based waveform shapes are identified, referenced, and discussed with regard to a manifold of waveform shape parameters. Here, strong linear dependencies are found between binned thin-ice thickness up to 25 cm from MODIS and the CryoSat-2 waveform shape parameters that show the possibility of either developing simple correction terms for altimeter ranges over thin ice or directing adjustments to current retracker algorithms specifically for very thin sea ice. This highlights the potential of CryoSat-2-based SAR altimetry to reliably discriminate between occurrences of thick sea ice, open-water leads, and thin ice within recently refrozen leads or areas of thin sea ice. Furthermore, a comparison to the ESA Climate Change Initiative's (CCI) CryoSat-2 surface type classification with classes sea ice, lead, and unknown reveals that the newly found thin-ice-related waveforms are divided up almost equally between unknown (46.3 %) and lead type (53.4 %) classifications. Overall, the UWC results in far fewer unknown classifications (1.4 % to 38.7 %). Thus, UWC provides more usable information for sea-ice freeboard and thickness retrieval and at the same time reduces range biases from thin-ice waveforms processed as regular sea ice in the CCI classification.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3