Combining regional mesh refinement with vertically enhanced physics to target marine stratocumulus biases as demonstrated in the Energy Exascale Earth System Model version 1

Author:

Bogenschutz Peter A.,Lee Hsiang-HeORCID,Tang QiORCID,Yamaguchi Takanobu

Abstract

Abstract. In this paper we develop a novel framework aimed to significantly reduce biases related to marine stratocumulus clouds in general circulation models (GCMs) while circumventing excessive computational cost requirements. Our strategy is to increase the horizontal resolution using a regionally refined mesh (RRM) over our region of interest in addition to using the Framework for Improvement by Vertical Enhancement (FIVE) to increase the vertical resolution only for specific physical processes that are important for stratocumulus. We apply the RRM off the coast of Peru in the southeastern Pacific, a region that climatologically contains the most marine stratocumulus in the subtropics. We find that our new modeling framework is able to replicate the results of our high-resolution benchmark simulation with much fidelity, while reducing the computational cost by several orders of magnitude. In addition, this framework is able to greatly reduce the long-standing biases associated with marine stratocumulus in GCMs when compared to the standard-resolution control simulation.

Funder

Biological and Environmental Research

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3