The Impact of Model Horizontal Resolution on Simulating Regional Climate Over East Asia Using Variable‐Resolution CESM2

Author:

Wang Weiyi12,Liu Xiaohong3ORCID,Lin Guangxing1,Wu Chenglai1ORCID

Affiliation:

1. International Center for Climate and Environment Sciences Institute of Atmospheric Physics Chinese Academy of Sciences Beijing China

2. University of Chinese Academy of Sciences Beijing China

3. Department of Atmospheric Sciences Texas A&M University College Station TX USA

Abstract

AbstractIn this study, a variable‐resolution version of the Community Earth System Model (VR‐CESM) with mesh refinement (∼0.125°) over East Asia is used to simulate the regional climate in this region. For the evaluation of model performance and sensitivity to model resolution, the simulated near‐surface temperature and precipitation are compared with observations and simulation results from a globally quasi‐uniform (∼1°) CESM (UN‐CESM). Results show that VR‐CESM better simulates the spatial patterns and seasonal variations of mean temperature and precipitation than UN‐CESM over China. For extreme events, VR‐CESM improves the simulation of the occurrence frequency of wintertime daily minimum temperature and heavy precipitation. In regions with complex terrains, VR‐CESM better resolves the topographic forcing and captures the observed fine‐scale spatial patterns of temperature and precipitation, although precipitation is still overestimated. For East Asian summer monsoon precipitation, both UN‐CESM and VR‐CESM tend to overestimate (underestimate) the precipitation over northern (southern) China, which is associated with too strong meridional water vapor transport in the models and biases in the large‐scale circulation in the middle and upper troposphere. Different from previous studies with different physics parameterizations and refined domains, as the model resolution increases, simulated monsoon precipitation evolution is not obviously improved, and convective precipitation intensity decreases over eastern China. Despite this, our results indicate that VR‐CESM simulates regional climate, topographical forcing, and large‐scale circulations over East Asia reasonably well, and thus it can be applied for the future climate projection in the region.

Publisher

American Geophysical Union (AGU)

Reference101 articles.

1. A parameterization of aerosol activation: 2. Multiple aerosol types

2. Evaluation of precipitation data sets along the Himalayan front

3. APHRODITE. (2012).A long‐term daily gridded precipitation dataset for Asia based on a dense network of rain gauges[Dataset].APHRODITE. Retrieved fromhttp://aphrodite.st.hirosaki‐u.ac.jp/download

4. Projecting climate change in South America using variable‐resolution Community Earth System Model: An application to Chile

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3