Author:
Seifert A.,Köhler C.,Beheng K. D.
Abstract
Abstract. Possible aerosol-cloud-precipitation effects over Germany are investigated using the COSMO model in a convection-permitting configuration close to the operational COSMO-DE. Aerosol effects on clouds and precipitation are modeled by using an advanced two-moment microphysical parameterization taking into account aerosol assumptions for cloud condensation nuclei (CCN) as well as ice nuclei (IN). Simulations of three summer seasons have been performed with various aerosol assumptions, and are analysed regarding surface precipitation, cloud properties, and the indirect aerosol effect on near-surface temperature. We find that the CCN and IN assumptions have a strong effect on cloud properties, like condensate amounts of cloud water, snow and rain as well as on the glaciation of the clouds, but the effects on surface precipitation are – when averaged over space and time – small. This robustness can only be understood by the combined action of microphysical and dynamical processes. On one hand, this shows that clouds can be interpreted as a buffered system where significant changes to environmental parameters, like aerosols, have little effect on the resulting surface precipitation. On the other hand, this buffering is not active for the radiative effects of clouds, and the changes in cloud properties due to aerosol perturbations may have a significant effect on radiation and near-surface temperature.
Reference60 articles.
1. Albrecht, B.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989.
2. Alpert, P., Halfon, N., and Levin, Z.: Does air pollution really suppress precipitation in {Israel}?, J. Appl. Meteorol., 47, 933–943, 2008.
3. Ayers, G. and Levin, Z.: Air pollution and precipitation, in: Clouds in the perturbed climate system, edited by Heintzenberg, J. and Charlson, R., 369–400, The MIT Press, 2009.
4. Baldauf, M., Seifert, A., Förstner, J., Majewski, D., and Raschendorfer, M.: Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities, Mon. Weather Rev., 139, 3887–3905, 2011.
5. Blahak, U.: Towards a better representation of high density ice particles in a state-of-the-art two-moment bulk microphysical scheme, in: Proc. 15th Int. Conf. Clouds and Precip., Cancun, Mexico, 2008.
Cited by
116 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献