An ML‐Based P3‐Like Multimodal Two‐Moment Ice Microphysics in the ICON Model

Author:

Seifert Axel1ORCID,Siewert Christoph1

Affiliation:

1. Deutscher Wetterdienst Offenbach Germany

Abstract

AbstractMachine learning (ML) is used to build a bulk microphysical parameterization including ice processes. Simulations of the Lagrangian super‐particle model McSnow are used as training data. The ML performs a coarse‐graining of the particle‐resolved microphysics to multi‐category two‐moment bulk equations. Besides mass and number, prognostic particle properties (P3) like melt water, rime mass, and rime volume are predicted by the ML‐based bulk model. The ML‐based scheme is tested with simulations of increasing complexity. As a box model, the ML‐based bulk scheme can reproduce the simulations of McSnow quite accurately. In 3d idealized squall line simulations, the ML‐based P3‐like scheme provides a more realistic extended stratiform region when compared to the standard two‐moment bulk scheme in ICON. In a realistic case study, the ML‐based scheme runs stably, but can not significantly improve the results. This shows that ML can be used to coarse‐grain super‐particle simulations to a bulk scheme of arbitrary complexity.

Publisher

American Geophysical Union (AGU)

Reference71 articles.

1. Efficient and stable coupling of the SuperdropNet deep learning‐based cloud microphysics (v0.1.0) to the ICON climate and weather model (v2.6.5);Arnold C.;EGUsphere,2023

2. Barklie R. &Gokhale N.(1959).The freezing of supercooled water drops. (MW‐30).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3