Gridded maps of geological methane emissions and their isotopic signature

Author:

Etiope GiuseppeORCID,Ciotoli GiancarloORCID,Schwietzke StefanORCID,Schoell Martin

Abstract

Abstract. Methane (CH4) is a powerful greenhouse gas, whose natural and anthropogenic emissions contribute ∼20 % to global radiative forcing. Its atmospheric budget (sources and sinks), however, has large uncertainties. Inverse modelling, using atmospheric CH4 trends, spatial gradients and isotopic source signatures, has recently improved the major source estimates and their spatial–temporal variation. Nevertheless, isotopic data lack CH4 source representativeness for many sources, and their isotopic signatures are affected by incomplete knowledge of the spatial distribution of some sources, especially those related to fossil (radiocarbon-free) and microbial gas. This gap is particularly wide for geological CH4 (geo-CH4) seepage, i.e. the natural degassing of hydrocarbons from the Earth's crust. While geological seepage is widely considered a major source of atmospheric CH4, it has been largely neglected in 3-D inverse CH4 budget studies given the lack of detailed a priori gridded emission maps. Here, we report for the first time global gridded maps of geological CH4 sources, including emission and isotopic data. The 1∘×1∘ maps include the four main categories of natural geo-CH4 emission: (a) onshore hydrocarbon macro-seeps, including mud volcanoes, (b) submarine (offshore) seeps, (c) diffuse microseepage and (d) geothermal manifestations. An inventory of point sources and area sources was developed for each category, defining areal distribution (activity), CH4 fluxes (emission factors) and its stable C isotope composition (δ13C-CH4). These parameters were determined considering geological factors that control methane origin and seepage (e.g. petroleum fields, sedimentary basins, high heat flow regions, faults, seismicity). The global geo-source map reveals that the regions with the highest CH4 emissions are all located in the Northern Hemisphere, in North America, in the Caspian region, in Europe and in the East Siberian Arctic Shelf. The globally gridded CH4 emission estimate (37 Tg yr−1 exclusively based on data and modelling specifically targeted for gridding, and 43–50 Tg yr−1 when extrapolated to also account for onshore and submarine seeps with no location specific measurements available) is compatible with published ranges derived using top-down and bottom-up procedures. Improved activity and emission factor data allowed previously published mud volcanoes and microseepage emission estimates to be refined. The emission-weighted global mean δ13C-CH4 source signature of all geo-CH4 source categories is about −49 ‰. This value is significantly lower than those attributed so far in inverse studies to fossil fuel sources (−44 ‰) and geological seepage (−38 ‰). It is expected that using this updated, more 13C-depleted, isotopic signature in atmospheric modelling will increase the top-down estimate of the geological CH4 source. The geo-CH4 emission grid maps can now be used to improve atmospheric CH4 modelling, thereby improving the accuracy of the fossil fuel and microbial components. Grid csv (comma-separated values) files are available at https://doi.org/10.25925/4j3f-he27.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference67 articles.

1. Aliyev, A. A., Guliyev, I. S., and Feyzullayev, A. A.: What do we know about mud volcanoes Azerbaijan National Academy of Sciences Geology Institute, Qoliaf qrup QSC, Baku, 206 pp., 2012.

2. Berchet, A., Bousquet, P., Pison, I., Locatelli, R., Chevallier, F., Paris, J.-D., Dlugokencky, E. J., Laurila, T., Hatakka, J., Viisanen, Y., Worthy, D. E. J., Nisbet, E., Fisher, R., France, J., Lowry, D., Ivakhov, V., and Hermansen, O.: Atmospheric constraints on the methane emissions from the East Siberian Shelf, Atmos. Chem. Phys., 16, 4147–4157, https://doi.org/10.5194/acp-16-4147-2016, 2016.

3. Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C., Scheepmaker, R. A., Dlugokencky, E., Wofsy, S. C., Kort, E. A., Sweeney, C., Schuck, T., Brenninkmeijer, C., Chen, H., Beck, V., and Gerbig, C.: Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements, J. Geophys. Res.-Atmos., 118, 7350–7369, https://doi.org/10.1002/jgrd.50480, 2013.

4. Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D. A., Prigent, C., Van der Werf, G. R., Peylin, P., Brunke, E. G., Carouge, C., Langenfelds, R. L., Lathiere, J., Papa, F., Ramonet, M., Schmidt, M., Steele, L. P., Tyler, S. C., and White, J.: Contribution of anthropogenic and natural sources to atmospheric methane variability, Nature, 443, 439–443, 2006.

5. CGG: Organic Geochemistry Data from FRogi and Fluid Features Database, available at: https://www.cgg.com/en/What-We-Do/Multi-Client-Data/Geological/Robertson-Geochemistry (last access: 30 November 2018), 2015.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3