Revising VOC emissions speciation improves the simulation of global background ethane and propane
-
Published:2024-07-24
Issue:14
Volume:24
Page:8317-8342
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Rowlinson Matthew J.ORCID, Evans Mat J.ORCID, Carpenter Lucy J.ORCID, Read Katie A., Punjabi Shalini, Adedeji Adedayo, Fakes Luke, Lewis Ally, Richmond Ben, Passant Neil, Murrells Tim, Henderson BarronORCID, Bates Kelvin H.ORCID, Helmig Detlev
Abstract
Abstract. Non-methane volatile organic compounds (NMVOCs) generate ozone (O3) when they are oxidised in the presence of oxides of nitrogen, modulate the oxidative capacity of the atmosphere and can lead to the formation of aerosol. Here, we assess the capability of a chemical transport model (GEOS-Chem) to simulate NMVOC concentrations by comparing ethane, propane and higher-alkane observations in remote regions from the NOAA flask Network and the World Meteorological Organization's Global Atmosphere Watch (GAW) network. Using the Community Emissions Data System (CEDS) inventory, we find a significant underestimate in the simulated concentration of both ethane (35 %) and propane (64 %), consistent with previous studies. We run a new simulation in which the total mass of anthropogenic NMVOC emitted in a grid box is the same as that used in CEDS but with the NMVOC speciation derived from regional inventories. For US emissions, we use the National Emissions Inventory (NEI); for Europe, we use the UK National Atmospheric Emissions Inventory (NAEI); and for China, we use the Multi-resolution Emission Inventory model for Climate and air pollution research (MEIC). These changes lead to a large increase in the modelled concentrations of ethane, improving the mean model bias from −35 % to −4 %. Simulated propane also improves (from −64 % to −48 % mean model bias), but there remains a substantial model underestimate. There were relatively minor changes to other NMVOCs. The low bias in simulated global ethane concentration is essentially removed, resolving one long-term issue in global simulations. Propane concentrations are improved but remain significantly underestimated, suggesting the potential for a missing global propane source. The change in the NMVOC emission speciation results in only minor changes in tropospheric O3 and OH concentrations.
Funder
National Centre for Atmospheric Science
Publisher
Copernicus GmbH
Reference62 articles.
1. AQEG: Non-methane Volatile Organic Compounds in the UK, Report of the Air Quality Expert Group, Tech. rep., https://uk-air.defra.gov.uk/assets/documents/reports/cat09/2006240803_Non_Methane_Volatile_Organic_Compounds_in_the_UK.pdf (last access: 1 October 2023), 2020. a, b 2. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006. a, b 3. Aydin, M., Verhulst, K. R., Saltzman, E. S., Battle, M. O., Montzka, S. A., Blake, D. R., Qi Tang, Tang, Q., and Prather, M. J.: Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air, Nature, 476, 198–201, https://doi.org/10.1038/nature10352, 2011. a 4. Bates, K. H., Jacob, D. J., Li, K., Ivatt, P. D., Evans, M. J., Yan, Y., and Lin, J.: Development and evaluation of a new compact mechanism for aromatic oxidation in atmospheric models, Atmos. Chem. Phys., 21, 18351–18374, https://doi.org/10.5194/acp-21-18351-2021, 2021. a 5. Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001. a
|
|