Detection of dimming/brightening in Italy from homogenized all-sky and
clear-sky surface solar radiation records and underlying causes (1959–2013)
-
Published:2016-09-08
Issue:17
Volume:16
Page:11145-11161
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Manara Veronica, Brunetti MicheleORCID, Celozzi Angela, Maugeri Maurizio, Sanchez-Lorenzo Arturo, Wild MartinORCID
Abstract
Abstract. A dataset of 54 daily Italian downward surface solar radiation (SSR) records has been set up collecting data for the 1959–2013 period. Special emphasis is given to the quality control and the homogenization of the records in order to ensure the reliability of the resulting trends. This step has been shown as necessary due to the large differences obtained between the raw and homogenized dataset, especially during the first decades of the study period. In addition, SSR series under clear-sky conditions were obtained considering only the cloudless days from corresponding ground-based cloudiness observations. Subsequently, records were interpolated onto a regular grid and clustered into two regions, northern and southern Italy, which were averaged in order to get all-sky and clear-sky regional SSR records. Their temporal evolution is presented, and possible reasons for differences between all-sky and clear-sky conditions and between the two regions are discussed in order to determine to what extent SSR variability depends on aerosols or clouds. Specifically, the all-sky SSR records show a decrease until the mid-1980s (dimming period), and a following increase until the end of the series (brightening period) even though strength and persistence of tendencies are not the same in all seasons. Clear-sky records present stronger tendencies than all-sky records during the dimming period in all seasons and during the brightening period in winter and autumn. This suggests that, under all-sky conditions, the variations caused by the increase/decrease in the aerosol content have been partially masked by cloud cover variations, especially during the dimming period. Under clear sky the observed dimming is stronger in the south than in the north. This peculiarity could be a consequence of a significant contribution of mineral dust variations to the SSR variability.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference89 articles.
1. Aguilar, E., Auer, I., Brunet, M., Peterson, T. C., and Wieringa, J.: Guidelines on climate metadata and homogenization, World Climate Programme Data and Monitoring WCDMP-No. 53, WMO-TD No. 1186, 50, 2003. 2. Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 3. Allen, R. J., Norris, J. R., and Wild, M.: Evaluation of multidecadal variability in CMIP5 surface solar radiation and inferred underestimation of aerosol direct effects over Europe, China, Japan, and India, J. Geophys. Res.-Atmos., 118, 6311–6336, https://doi.org/10.1002/jgrd.50426, 2013. 4. Alpert, P., Kishcha, P., Kaufman, Y. J., and Schwarzbard, R.: Global dimming or local dimming?: Effect of urbanization on sunlight availability, Geophys. Res. Lett., 32, L17802, https://doi.org/10.1029/2005GL023320, 2005. 5. Bonasoni, P., Cristofanelli, P., Calzolari, F., Bonafè, U., Evangelisti, F., Stohl, A., Zauli Sajani, S., van Dingenen, R., Colombo, T., and Balkanski, Y.: Aerosol-ozone correlations during dust transport episodes, Atmos. Chem. Phys., 4, 1201–1215, https://doi.org/10.5194/acp-4-1201-2004, 2004.
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|