Trends in observed surface solar radiation and their causes in Brazil in the first 2 decades of the 21st century
-
Published:2024-08-09
Issue:15
Volume:24
Page:8797-8819
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Ferreira Correa LucasORCID, Folini DorisORCID, Chtirkova BorianaORCID, Wild MartinORCID
Abstract
Abstract. Numerous studies have investigated the long-term variability in surface solar radiation (SSR) around the world. However, the large disparity in the availability of observational data between developed and less developed/developing countries leads to an under-representation of studies on SSR changes in the latter. This is especially true for South America, where few observational studies have investigated the SSR trends and usually only at a local or regional scale. In this study we use data from 34 stations distributed throughout all of the regions of Brazil to present the SSR trends in the first 2 decades of the 21st century and investigate their associated causes. The stations were grouped into eight composites according to their proximity. Our results show that in north and northeast Brazil a strong dimming occurred, with significant contributions from increasing atmospheric absorption, most likely due to anthropogenic emissions, and increasing cloud cover. In the southeast and midwest regions of Brazil, near-zero trends resulted from competing effects of clear-sky processes (attenuation of solar radiation under cloudless conditions) and strong negative trends in cloud cover. In the southern part of the Amazon and in south Brazil a statistically insignificant brightening was observed, with significant contributions from decreasing biomass burning emissions in the former and competing minor contributions in the latter. These results can help deepen our knowledge and understanding of SSR long-term trends and their causes in South America, reducing the under-representation of this continent when compared with regions like Europe.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Copernicus GmbH
Reference78 articles.
1. Artaxo, P., Oliveira, P. H., Lara, L. L., Pauliquevis, T. M., Rizzo, L. V., Junior, C. P., Paixão, M. A., Longo, K. M., de Freitas, S., and Correia, A. L.: Efeitos climáticos de partículas de aerossóis biogênicos e emitidos em queimadas na Amazônia, Revista Brasileira de Meteorologia, 21, 168–189, 2006. 2. Augustine, J. A. and Capotondi, A.: Forcing for multidecadal surface solar radiation trends over Northern Hemisphere continents, J. Geophys. Res.-Atmos., 127, e2021JD036342, https://doi.org/10.1029/2021JD036342, 2022. 3. Byrne, R. N., Somerville, R. C. J., and Subaşilar, B.: Broken-cloud enhancement of solar radiation absorption, J. Atmos. Sci., 53, 878–886, https://doi.org/10.1175/1520-0469(1996)053<0878:BCEOSR>2.0.CO;2, 1996. 4. Chiacchio, M. and Wild, M.: Influence of NAO and clouds on long-term seasonal variations of surface solar radiation in Europe, J. Geophys. Res.-Atmos., 115, D00D22, https://doi.org/10.1029/2009JD012182, 2010. 5. Chtirkova, B., Folini, D., Correa, L. F., and Wild, M.: Internal variability of the climate system mirrored in decadal-scale trends of surface solar radiation, J. Geophys. Res.-Atmos., 128, e2023JD038573, https://doi.org/10.1029/2023JD038573, 2023.
|
|