An Investigation on Causes of the Detected Surface Solar Radiation Brightening in Europe Using Satellite Data

Author:

Schilliger Linda12ORCID,Tetzlaff Anke1,Bourgeois Quentin1ORCID,Correa Lucas Ferreira2ORCID,Wild Martin2ORCID

Affiliation:

1. Federal Office for Meteorology and Climatology (MeteoSwiss) Zurich Switzerland

2. Institute for Atmospheric and Climate Science ETH Zurich Zurich Switzerland

Abstract

AbstractSurface solar radiation is fundamental for terrestrial life. It provides warmth to make our planet habitable, drives atmospheric circulation, the hydrological cycle and photosynthesis. Europe has experienced an increase in surface solar radiation, termed “brightening,” since the 1980s. This study investigates the causative factors behind this brightening. A novel algorithm from the EUMETSAT satellite application facility on climate monitoring (CM SAF) provides the unique opportunity to simulate surface solar radiation under various atmospheric conditions for clouds (clear‐sky or all‐sky), aerosol optical depth (time‐varying or climatological averages) and water vapor content (with or without its direct influence on surface solar radiation). Through a multiple linear regression approach, the study attributes brightening trends to changes in these atmospheric parameters. Analyzing 61 locations distributed across Europe from 1983 to 2020, aerosols emerge as key driver during 1983–2002, with Southern Europe and high elevations showing subdued effects (0%/decade–1%/decade) versus more pronounced impacts in Northern and Eastern Europe (2%/decade–6%/decade). Cloud effects exhibit spatial variability, inducing a negative effect on surface solar radiation (−3%/decade–−2%/decade) at most investigated locations in the same period. In the period 2001–2020, aerosol effects are much smaller, while cloud effects dominate the observed brightening (2%/decade–5%/decade). This study therefore finds a substantial decrease in the cloud radiative effect over Europe in the first two decades of the 21st century. Water vapor exerts negligible influence in both sub‐periods.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3