MeteoIO 2.4.2: a preprocessing library for meteorological data

Author:

Bavay M.ORCID,Egger T.

Abstract

Abstract. Using numerical models which require large meteorological data sets is sometimes difficult and problems can often be traced back to the Input/Output functionality. Complex models are usually developed by the environmental sciences community with a focus on the core modelling issues. As a consequence, the I/O routines that are costly to properly implement are often error-prone, lacking flexibility and robustness. With the increasing use of such models in operational applications, this situation ceases to be simply uncomfortable and becomes a major issue. The MeteoIO library has been designed for the specific needs of numerical models that require meteorological data. The whole task of data preprocessing has been delegated to this library, namely retrieving, filtering and resampling the data if necessary as well as providing spatial interpolations and parameterizations. The focus has been to design an Application Programming Interface (API) that (i) provides a uniform interface to meteorological data in the models, (ii) hides the complexity of the processing taking place, and (iii) guarantees a robust behaviour in the case of format errors, erroneous or missing data. Moreover, in an operational context, this error handling should avoid unnecessary interruptions in the simulation process. A strong emphasis has been put on simplicity and modularity in order to make it extremely easy to support new data formats or protocols and to allow contributors with diverse backgrounds to participate. This library is also regularly evaluated for computing performance and further optimized where necessary. Finally, it is released under an Open Source license and is available at http://models.slf.ch/p/meteoio. This paper gives an overview of the MeteoIO library from the point of view of conceptual design, architecture, features and computational performance. A scientific evaluation of the produced results is not given here since the scientific algorithms that are used have already been published elsewhere.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3