openAMUNDSEN v1.0: an open-source snow-hydrological model for mountain regions

Author:

Strasser UlrichORCID,Warscher MichaelORCID,Rottler ErwinORCID,Hanzer Florian

Abstract

Abstract. openAMUNDSEN (the open source version of the Alpine MUltiscale Numerical Distributed Simulation ENgine) is a fully distributed snow-hydrological model, designed primarily for calculating the seasonal evolution of snow cover and melt rates in mountain regions. It resolves the mass and energy balance of snow-covered surfaces and layers of the snowpack, thereby including the most important processes that are relevant in complex mountain topography. The potential model applications are very versatile; typically, it is applied in areas ranging from the point scale to the regional scale (i.e., up to some thousands of square kilometers) using a spatial resolution of 10–1000 m and a temporal resolution of 1–3 h or daily. Temporal horizons may vary between single events and climate change scenarios. The openAMUNDSEN model has already been used for many applications, which are referenced herein. It features a spatial interpolation of meteorological observations, several layers of snow with different density and liquid-water contents, wind-induced lateral redistributions, snow–canopy interactions, glacier ice responses to climate, and more. The model can be configured according to each specific application case. A basic consideration for its development was to include a variety of process descriptions of different complexity to set up individual model runs which best match a compromise between physical detail, transferability, simplicity, and computational performance for a certain region in the European Alps, typically a (preferably gauged) hydrological catchment. The Python model code and example data are available as an open-source project on GitHub (https://github.com/openamundsen/openamundsen, last access: 1 June 2024).

Publisher

Copernicus GmbH

Reference87 articles.

1. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration - Guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper No. 56, 174 pp., ISBN 92-5-104219-5, https://www.fao.org/3/x0490e/x0490e00.htm (last access: 9 September 2024), 1998.

2. Anderson, E. A.: A point energy and mass balance model of a snow cover. NOAA Technical Report NWS 19, 1–172, https://repository.library.noaa.gov/view/noaa/6392 (last access: 9 September 2024), 1976.

3. Asztalos, J., Kirnbauer, R., Escher-Vetter, H., and Braun, L.: A distributed energy balance snowmelt model as a component of a flood forecasting system for the Inn river, Proceedings of the Alpine*Snow*Workshop, edited by: Strasser, U. and Vogel M., 5–6 October 2006, Munich, Germany, Research report 53, National Park Berchtesgaden, ISBN 13 978-3-922325-60-4, 2007.

4. Barnes, S. L.: A technique for maximising details in numerical weather map analysis. J. Appl. Meteor., 3, 396–409, 1964.

5. Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow- dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3