Subgridding high-resolution numerical weather forecast in the Canadian Selkirk mountain range for local snow modeling in a remote sensing perspective

Author:

Billecocq PaulORCID,Langlois Alexandre,Montpetit BenoitORCID

Abstract

Abstract. Snow water equivalent (SWE) is a key variable in climate and hydrology studies. Yet, current SWE products mask out high-topography areas due to the coarse resolution of the satellite sensors used. The snow remote sensing community is hence pushing towards active-microwave approaches for global SWE monitoring. Designing a SWE retrieval algorithm is not trivial, as multiple combinations of snow microstructure representations and SWE can yield the same radar signal. Retrieval algorithm designs are converging towards forward modeling approaches using an educated first guess on the snowpack structure. Snow highly varies in space and time, especially in mountain environments where the complex topography affects atmospheric and snowpack state variables in numerous ways. In Canada, automatic weather stations are too sparse, and high-resolution numerical weather prediction systems have a maximal resolution of 2.5 km × 2.5 km, which is too coarse to capture snow spatial variability in a complex topography. In this study, we designed a subgridding framework for the Canadian High Resolution Deterministic Prediction System (HRDPS). The native 2.5 km × 2.5 km resolution forecast was subgridded to a 100 m × 100 m resolution and used as the input for snow modeling over two winters in Glacier National Park, British Columbia, Canada. Air temperature, relative humidity, precipitation, and wind speed were first parameterized regarding elevation using six automatic weather stations. We then used Alpine3D to spatialize atmospheric parameters and radiation input accounting for terrain reflections, and we performed the snow simulations. We evaluated modeled snowpack state variables relevant for microwave remote sensing against simulated profiles generated with automatic weather station data and compared them to simulated profiles driven by raw HRDPS data. The subgridding framework improves the optical grain size bias by 18 % on average and the modeled SWE by 16 % compared to simulations driven with raw HRDPS forecasts. This work could improve the snowpack radar backscattering modeling by up to 7 dB and serves as a basis for SWE retrieval algorithms using forward modeling in a Bayesian framework.

Funder

Natural Sciences and Engineering Research Council of Canada

Fonds de recherche du Québec – Nature et technologies

Public Safety Canada

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3