Cloud phase characteristics over Southeast Asia from A-Train satellite observations

Author:

Hong YulanORCID,Di Girolamo LarryORCID

Abstract

Abstract. This study examines the climatology of cloud phase over Southeast Asia (SEA) based on A-Train satellite observations. Using the combined CloudSat–CALIPSO (CC) data, five main cloud groups are investigated: ice-only, ice-above-liquid, liquid-only, ice-above-mixed, and mixed-only clouds that have annual mean frequencies of 28.6 %, 20.1 %, 16.0 %, 9.3 %, and 6.7 %, respectively. Liquid-only clouds tend to occur in relatively cold, dry, and stable lower troposphere. The other four cloud groups appear more frequently in relatively warm, humid, and unstable conditions, and their seasonal distributions move with the Asian monsoon and the Intertropical Convergence Zone (ITCZ). Liquid clouds are found to be highly inhomogeneous based on the heterogeneity index (Hσ) from Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), while ice-only and mixed-only clouds are often very smooth. Ice-above-liquid clouds are more heterogeneous than ice-only clouds owing to ice clouds being optically thin. We demonstrate that the distribution of clear-sky Hσ has a long tail towards heterogeneous values that are caused by undetected subpixel cloud within both CC and MODIS datasets. The reflectance at 0.645 µm (R0.645) and brightness temperature at 11 µm (BT11) of CC ice-only, liquid-only, and ice-above-liquid clouds show peak frequencies near that of clear sky (R0.645∼0.02; BT11∼294 K), which explains why up to 30 % of these CC cloud groups are classified as clear by MODIS. In contrast, mixed-only clouds are thick (average top ∼13 km), bright (average R0.645∼0.6), and cold (average BT11 ∼234 K). Cloud phase comparison between CC and MODIS reveals only modest agreement, with the best agreement (73 %) occurring between CC ice-above-mixed and MODIS ice clouds. The intraseasonal and interannual behaviors of the all-sky Hσ and spectral signatures follow that of cloud phase and vary with the Madden–Julian oscillation (MJO) and the El Niño–Southern Oscillation (ENSO) phases.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3