On the Consistency of Ice Cloud Optical Models for Spaceborne Remote Sensing Applications and Broadband Radiative Transfer Simulations

Author:

Ren Tong1ORCID,Yang Ping1ORCID,Loeb Norman G.2,Smith William L.2,Minnis Patrick23

Affiliation:

1. Department of Atmospheric Sciences Texas A&M University College Station TX USA

2. NASA Langley Research Center Hampton VA USA

3. Analytical Mechanics Associates, Inc. Hampton VA USA

Abstract

AbstractAqua satellite Moderate Resolution Imaging Spectroradiometer (MODIS) 1‐km observations are collocated with Clouds and the Earth's Radiant Energy System (CERES) fields of view taken during July 2008 afternoon satellite passes over the equatorial western Pacific Ocean. Radiation simulations are compared with collocated CERES observations to better understand the sensitivity of computed fluxes to two ice cloud broadband radiation parameterization schemes and inferred ice cloud characteristics. In particular, the radiation computational schemes and ice cloud property retrievals are based on two respective ice particle models, the MODIS Collection 6 (MC6) aggregate model and a more microphysically consistent two‐habit model (THM). The simulation results show that both MC6 and THM overestimate the shortwave (SW) and longwave (LW) cloud radiative effects at the top of the atmosphere, as compared to the CERES observations; the difference between the MC6 and THM‐based ice cloud retrievals is too small to compensate for the differences between the two model‐based radiation schemes. Therefore, the present finding suggests that broadband radiative simulations are more sensitive to the radiation parameterization scheme than to the input cloud properties retrieved using the corresponding ice cloud particle optical property model.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3