Influence of natural and anthropogenic aerosols on cloud base droplet size distributions in clouds over the South China Sea and West Pacific

Author:

Miller Rose MarieORCID,Rauber Robert M.,Di Girolamo LarryORCID,Rilloraza Matthew,Fu Dongwei,McFarquhar Greg M.ORCID,Nesbitt Stephen W.,Ziemba Luke D.,Woods SarahORCID,Thornhill Kenneth Lee

Abstract

Abstract. Cumulus clouds are common over maritime regions. They are important regulators of the global radiative energy budget and global hydrologic cycle, as well as a key contributor to the uncertainty in anthropogenic climate change projections due to uncertainty in aerosol–cloud interactions. These interactions are regionally specific owing to their strong influences on aerosol sources and meteorology. Here, our analysis focuses on the statistical properties of marine boundary layer (MBL) aerosol chemistry and the relationships of MBL aerosol to cumulus cloud properties just above cloud base as sampled in 2019 during the NASA Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex). The aerosol and clouds were sampled by instruments on the NASA P-3 aircraft over three distinct maritime regions around the Philippines: the West Pacific, the South China Sea, and the Sulu Sea. Our analysis shows three primary sources influenced the aerosol chemical composition: clean marine (ocean source), industrial (Southeast Asia, Manila, and cargo and tanker ship emissions), and biomass burning (Borneo and Indonesia). The clean marine aerosol chemical composition had low values of all sampled chemical signatures, specifically median values of 2.2 µg m−3 of organics (ORG), 2.3 µg m−3 of SO4, 0.3 µg m−3 of NO3, 1.4 µg m−3 of NH4, 0.04 µg m−3 of Cl, and 0.0074 µg m−3 of refractory black carbon (BC). Chemical signatures of the other two aerosol source regions were industrial, with elevated SO4 having a median value of 6.1 µg m−3, and biomass burning, with elevated median concentrations of ORG 21.2 µg m−3 and BC 0.1351 µg m−3. Based on chemical signatures, the industrial component was primarily from ship emissions, which were sampled within 60 km of ships and within projected ship plumes. Normalized cloud droplet size distributions in clouds sampled near the MBL passes of the P-3 showed that clouds impacted by industrial and biomass burning contained higher concentrations of cloud droplets, by as much as 1.5 orders of magnitude for diameters < 13 µm compared to clean marine clouds, while at size ranges between 13.0–34.5 µm the median concentrations of cloud droplets in all aerosol categories were nearly an order of magnitude less than the clean marine category. In the droplet size bins centered at diameters > 34.5 µm concentrations were equal to, or slightly exceeded, the concentrations of the clean marine clouds. These analyses show that anthropogenic aerosols generated from industrial and biomass burning sources significantly influenced cloud base microphysical structure in the Philippine region enhancing the small droplet concentration and reducing the concentration of mid-sized droplets.

Funder

Science Mission Directorate

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3