Comparison of one- and two-filter detectors for atmospheric <sup>222</sup>Rn measurements under various meteorological conditions

Author:

Xia Y.,Sartorius H.,Schlosser C.,Stöhlker U.,Conen F.,Zahorowski W.

Abstract

Abstract. Parallel monitoring of 222Rn and its short-lived progeny (218Po and 214Pb) were carried out from November 2007 to April 2008 close to the top of the Schauinsland mountain, partly covered with forest, in South-West Germany. Samples were aspired from the same location at 2.5 m above ground level. We measured 222Rn with a dual flow loop, two-filter detector and its short-lived progeny with a one-filter detector. A reference sector for events, facing a steep valley and dominated by pasture, was used to minimize differences between 222Rn and progeny-derived 222Rn activity concentrations. In the two major wind sectors covered by forest to a distance between 60 m and 80 m towards the station progeny-derived 222Rn activity concentration was on average equal to 87% (without precipitation) and 74% (with precipitation) of 222Rn activity concentration. The observations show that most of the time both detector types follow the same pattern. Still, there is no single disequilibrium factor that could be used to exactly transform short-lived progeny to 222Rn activity concentration under all meteorological conditions.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3