Intercomparison study of atmospheric <sup>222</sup>Rn and <sup>222</sup>Rn progeny monitors

Author:

Grossi ClaudiaORCID,Chambers Scott D.ORCID,Llido Olivier,Vogel Felix R.ORCID,Kazan Victor,Capuana Alessandro,Werczynski Sylvester,Curcoll RogerORCID,Delmotte Marc,Vargas ArturoORCID,Morguí Josep-AntonORCID,Levin IngeborgORCID,Ramonet Michel

Abstract

Abstract. The use of the noble gas radon (222Rn) as a tracer for different research studies, for example observation-based estimation of greenhouse gas (GHG) fluxes, has led to the need of high-quality 222Rn activity concentration observations with high spatial and temporal resolution. So far a robust metrology chain for these measurements is not yet available. A portable direct atmospheric radon monitor (ARMON), based on electrostatic collection of 218Po, is now running at Spanish stations. This monitor has not yet been compared with other 222Rn and 222Rn progeny monitors commonly used at atmospheric stations. A 3-month intercomparison campaign of atmospheric 222Rn and 222Rn progeny monitors based on different measurement techniques was realized during the fall and winter of 2016–2017 to evaluate (i) calibration and correction factors between monitors necessary to harmonize the atmospheric radon observations and (ii) the dependence of each monitor's response in relation to the sampling height and meteorological and atmospheric aerosol conditions. Results of this study have shown the following. (i) All monitors were able to reproduce the atmospheric radon variability on a daily basis. (ii) Linear regression fits between the monitors exhibited slopes, representing the correction factors, between 0.62 and 1.17 and offsets ranging between −0.85 and −0.23 Bq m−3 when sampling 2 m above ground level (a.g.l.). Corresponding results at 100 m a.g.l. exhibited slopes of 0.94 and 1.03 with offsets of −0.13 and 0.01 Bq m−3, respectively. (iii) No influence of atmospheric temperature and relative humidity on monitor responses was observed for unsaturated conditions at 100 m a.g.l., whereas slight influences (order of 10−2) of ambient temperature were observed at 2 m a.g.l. (iv) Changes in the ratio between 222Rn progeny and 222Rn monitor responses were observed under very low atmospheric aerosol concentrations. Results also show that the new ARMON could be useful at atmospheric radon monitoring stations with space restrictions or as a mobile reference instrument to calibrate in situ 222Rn progeny monitors and fixed radon monitors. In the near future a long-term comparison study between ARMON, HRM, and ANSTO monitors would be useful to better evaluate (i) the uncertainties of radon measurements in the range of a few hundred millibecquerels per cubic meter to a few becquerels per cubic meter and (ii) the response time correction of the ANSTO monitor for representing fast changes in the ambient radon concentrations.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference55 articles.

1. Baskaran, M.: Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a Review, J. Environ. Radioactiv., 102, 500–513, https://doi.org/10.1016/j.jenvrad.2010.10.007, 2011.

2. Baskaran, M.: Radon: A Tracer for Geological, Geophysical and Geochemical Studies, in: Springer Geochemistry, Springer International Publishing, 260 pp., https://doi.org/10.1007/978-3-319-21329-3, 2016.

3. Biraud, S.: Vers la régionalisation des puits et sources des composes à effet de serre: analyse de la variabilité synoptique à l'observatoire de Mace Head, Irlande, PhD thesis, University of Paris VII, France, 2000.

4. Birmili, W., Ries, L., Sohmer, R., Anastou, A., Sonntag, A., Konig, K., and Levin, I.: Fine and ultrafine aerosol particles at the GAW station Schneefernerhaus/Zugspitze, Gefahrst. Reinhalt. L., 69, 31–35, 2009.

5. Brunke, E.-G. Labuschagne, C. Parker, B. van der Spuy, D., and Whittlestone, W.: Cape Point GAW Station 222Rn detector: factors affecting sensitivity and accuracy, Atmos. Environ., 36, 2257–2262, https://doi.org/10.1016/S1352-2310(02)00196-6, 2002.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3