Rapid O3 assimilations – Part 2: Tropospheric O3 changes accompanied by declining NOx emissions in the USA and Europe in 2005–2020
-
Published:2023-09-01
Issue:17
Volume:23
Page:9745-9763
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zhu Rui, Tang Zhaojun, Chen Xiaokang, Liu Xiong, Jiang ZheORCID
Abstract
Abstract. Tropospheric nitrogen dioxide (NO2) concentrations have declined dramatically over the United States (USA) and Europe in recent decades. Here we investigate the changes in surface and free-tropospheric O3 accompanied by NO2 changes over the USA and Europe in 2005–2020 by assimilating the Ozone Monitoring Instrument (OMI) and U.S. Air Quality
System (AQS) and European AirBase network O3 observations. The assimilated O3 concentrations demonstrate good agreement with O3
observations. Surface O3 concentrations are 41.4, 39.5, and 39.5 ppb
(parts per billion; USA) and 35.3, 32.0, and 31.6 ppb (Europe) and tropospheric O3 columns are 35.5, 37.0, and 36.8 DU (USA) and 32.8, 35.3, and 36.4 DU (Europe) in the simulations, assimilations, and observations, respectively. We find overestimated summertime surface O3 concentrations over the USA and Europe, which resulted in a surface O3 maximum in July–August in the simulations, which is in contrast to April in the observations. Furthermore, our analysis exhibits limited changes in surface O3 concentrations; i.e., they decreased by −6 % over the USA and increased by 1.5 % over Europe in 2005–2020. The surface observation-based assimilations suggest insignificant changes in tropospheric O3 columns, namely −3.0 % (USA) and 1.5 % (Europe) in 2005–2020. While the OMI-based assimilations exhibit larger decreases in tropospheric O3 columns, with −12.0 % (USA) and −15.0 % (Europe) in 2005–2020, the decreases mainly occurred in 2010–2014, corresponding to the reported slower decline in free-tropospheric NO2 since 2010. Our analysis thus suggests that there are limited impacts of the decline in local emissions on tropospheric O3 over the USA and Europe and advises more efforts to evaluate the possible contributions of natural sources and transport. The discrepancy in assimilated tropospheric O3 columns further indicates the possible uncertainties in the derived tropospheric O3 changes.
Funder
National Natural Science Foundation of China
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference38 articles.
1. Boleti, E., Hueglin, C., Grange, S. K., Prévôt, A. S. H., and Takahama, S.: Temporal and spatial analysis of ozone concentrations in Europe based on timescale decomposition and a multi-clustering approach, Atmos. Chem. Phys., 20, 9051–9066, https://doi.org/10.5194/acp-20-9051-2020, 2020. 2. Chen, J., Jiang, Z., Li, R., Liao, C., Miyazaki, K., and Jones, D. B. A.:
Large discrepancy between observed and modeled wintertime tropospheric NO2
variabilities due to COVID-19 controls in China, Environ. Res. Lett., 17,
035007, https://doi.org/10.1088/1748-9326/ac4ec0, 2022. 3. Chen, X., Jiang, Z., Shen, Y., Li, R., Fu, Y., Liu, J., Han, H., Liao, H.,
Cheng, X., Jones, D. B. A., Worden, H., and Abad, G. G.: Chinese Regulations
Are Working—Why Is Surface Ozone Over Industrialized Areas Still High?
Applying Lessons From Northeast US Air Quality Evolution, Geophys. Res. Lett., 48, e2021GL092816, https://doi.org/10.1029/2021gl092816, 2021. 4. Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova, K., Muntean, M., Van Dingenen, R., and Granier, C.: Forty years of improvements in European air quality: regional policy-industry interactions with global impacts, Atmos. Chem. Phys., 16, 3825–3841, https://doi.org/10.5194/acp-16-3825-2016, 2016. 5. Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J., Sabath, M.
B., Choirat, C., Koutrakis, P., Lyapustin, A., Wang, Y., Mickley, L. J., and
Schwartz, J.: Assessing NO2 Concentration and Model Uncertainty with High
Spatiotemporal Resolution across the Contiguous United States Using Ensemble
Model Averaging, Environ. Sci. Technol., 54, 1372–1384,
https://doi.org/10.1021/acs.est.9b03358, 2020.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|